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TIME, BOHM’S THEORY, AND QUANTUM COSMOLOGY*
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One of the problems of quantum cosmology follows from the fact that the
Hamiltonian H of classical general relativity equals zero. Quantizing ca-
nonically in the Schrodinger picture, the Schrodinger equation for the
wave function ¥ of the universe is therefore the so-called Wheeler-DeWitt
equation

9%/ot = HY = 0, (1)

(where H is the operator version of H) and we have no quantum dynamics.
In particular, it follows directly that, if R is the operator representing the
radius of the universe,

d<R>/dt = 0,

where <R>w = W<[R|>Y, for every ¥. The universe described by (1)
does not expand. But worse still is the fact that there is no time develop-
ment, contrary to our experience. Like a particle in an eigenstate of zero
energy, the state of the universe does not change. The still universe re-
sulting from (1) is 2 manifestation of the more general “problem of time”
afflicting canonical quantum gravity. Despite rare claims to the contrary,
most consider it to be a serious difficulty for quantum cosmology.

As we and others have pointed out, Bohm’s 1952 interpretation of quan-
tum mechanics offers a neat solution to this problem (see Callender and
Weingard 1994, Shtanov 1995, Holland 1993, Vink 1992). Because the
“beables” (in Bell’s terminology) in Bohm’s theory—in this case the com-
ponents of the metric and other physical fields—obey a different equation
of motion than the Schrodinger equation, we can have a nonzero dynamics
for the fields, even though the wavefunction does not evolve. In particular,
suppose the radius of the universe is the only metric dynamical degree of
freedom, i.e., a minisuperspace model, in which R = exp[2a]. Then

da/dt = 3S/da (¥ = RexpliS))
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can be nonzero even though d¥/dt = 0. In other words, time is implicitly
defined through 0S/da, thereby allowing for a coherent dynamics. The
static world of quantum cosmology is allowed to evolve.

However, a natural question to raise about this Bohmian solution (and
any other solution to the problem of time) is how the above “Bohm time”,
t = t,, is related to the time that appears in the Schrodinger equation for
the wave function of the quantum matter fields. That is, we know that (in
the Schrodinger picture) the wave function of the matter fields obey the
Schrodinger equation in terms of what might be called the ordinary “ob-
servational” time t. Here t is the time of “classical” quantum mechanics,
according to which the metric of spacetime is part of the classical back-
ground. Our question is: what is the relation of the observational time t
to the Bohm time t,? Prima facie, there is no necessary connection, which
is quite worrying. The purpose of this note is to explore a plausible way
these two times can turn out to be the same.

The basic idea of this note is simply to apply Bohm’s theory to a sig-
nificant result of Thomas Banks’ (1985). We illustrate the idea using a
particle model of Banks that is, in fact, quite similar to the Wheeler-
DeWitt equation with a and ¢ as the dynamical variables. o, recall, is
essentially the radius of the universe, and ¢ is a spatially constant scalar
field. Here is what Banks shows. The Hamiltonian has the form

H = p¥2m + mV(a@) + p¥2 + U(ee) = 0,

where on the particle model m is supposed to be the large mass of the
particle. Banks then writes the wavefunction as

(@.0) = Ywa(@x(@,t(w).
To the zero-th order in m, then,
(P2m + mV()ywis(@) = 0
and this implies, to the same order of approximation,
ioy/ot, = (p¥2 + V(a,9)y, 2

where Banks time t=t,, is defined implicitly through the WKB ansatz as
some function of a. It should be emphasized that the full general relativ-
istic treatment follows exactly the same reasoning as the above particle
model, so nothing is lost in the simplification.

The idea is that for macroscopic dimensions of R(a), gravity is classical,
so the gravitational wavefunction should be of WKB form.! But the wav-

'In general, there will be two WKB solutions, one positive in the exponent, the other
negative. Thus, if Wyyp) and Yygsy are solutions to the Wheeler-DeWitt equation, so is the
superposition ayyggX, + bWwks) - Since Banks defines t,, implicitly by the phase of WyxgX »
he has to assume that the universal wave function is one of the two components. In the two
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efunction y of the matter field will, in general, not be of the WKB form,
for we know the matter fields are not usually in classical form. In the
particle model this is reflected in the large mass m of the a particle relative
to the ¢ particle. Although there is no time dependence in the gravitational
wavefunction, there is in the matter wavefunction, and so the Banks time,
t=t,, is the observational time. Therefore (2) is the time dependent Schro-
dinger equation for ¥.

Returning to Bohm’s theory, write y = exp[iS], Wwxs = R,exp[iS,], and
¥ = R,expliS,], so that

v = RRyexpli(S,(a) + Sy(a, 9))]-
Then according to the Bohm equation of motion
do/dt, = 3S/0¢ = 9S,/90.

Applying the Bohm equation of motion to (2) directly, we obtain de/dt
= 9S,/0¢, since the Bohm time t, for (2) equals the observational time t
by Bohm’s original construction. It follows trivially, then, that as far as
the field is concerned, the Bohm time t, and the observational time t co-
incide.

What about a? Again, from the Bohm equation of motion mda/dt, =
3S/da, butnow S = S, + S, and S, depends on a as well as S,. Therefore

mda/dt, = 3S,/0a + 9S,/da

SO
da/dt, = (1/m)(@S,/0a + 3S,/00).

But when V(a) < 1, the WKB wavefunction has the form
Ywks = V()" exp[£im[V/|V(0)|do.

In that case, S, = +mf+/|V(a)|da, where the sign is chosen, for example,
by boundary conditions (see fn. 1), and

da/dt, = V/|V(o)| + 1/m 9S,/00.
To zero-th order in m, then,

do/dt, = V/|V(0)|.

currently popular solutions to the Wheeler-DeWitt equation this is not a problem for us.
Hawking’s no-boundary wave function is real, so according to Bohm’s theory no dynamics
is produced for the beables, whereas Vilenkin’s boundary condition rules out one of the two
WKB components. (See Haliwell 1990 for details about these wave functions.) Note that
from a Bohmian point of view, all that is required is that the so-called ‘effective’ wave
function of the universe (see Durr et al. 1992) be of the form yy ) and that the total wave
function could be a superposition.
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Since Banks’ implicitly defines the observational time t as
do/dt = V/|V(0)| 3

(when V(o) is negative), we have for the time development of a again the
result that the Bohm time is the observational time.

Banks’ construction demonstrates how the matter fields might enjoy a
dynamics even if the wave function of the universe has no time develop-
ment. For this reason, the reader may wonder why anyone bothers deriv-
ing a Bohm time in the first place. Through equations (2) and (3) Banks
implicitly defines a time, as we saw, so what do we gain in quantum cos-
mology by treating it according to Bohm’s model? Two remarks are in
order. First, it is worth remarking that the Bohmian resolution of the
problem of time is much more general. On Banks’ model the matter fields
only evolve when the wave function is of the WKB form. That is, Banks’
time t,, is only defined when the wave function takes this form. But the
WXKB approximation is only valid when the universe is large and the grav-
itational fields are nearly classical. By contrast, the Bohm model provides
a dynamics so long as the wave function of the universe W is complex.
For nearly the same reason, Vink’s (1992) elimination of the Bohm time
in terms of an internal degree of freedom (a ““clock”) seems misguided, or
at least, unnecessary. Vink finds the Bohm time objectionable because it
is essentially the external time of classical mechanics and nonrelativistic
quantum mechanics. He feels this is inappropriate for quantum cosmol-
ogy. Although Vink’s procedure for eliminating the Bohm time in terms
of a clock is well-defined outside the WKB regime, it still works only when
the clock energy is negligible compared to the potential energy. But in
view of the Bohm time’s greater generality, this attempt seems to mistake
a virtue for a vice! Far from being something worth eliminating, the Bohm
time not only supplies a coherent dynamics for the universe when the
universe is not in the WKB regime but also for when the universe is small
compared to Vink’s clock.

Second, although the WKB approximation puts the wave function for
¢ near an eigenstate of velocity (differing by an a-dependent factor), it still
is not an eigenstate of velocity. This raises the question of its proper phys-
ical interpretation. Since Bohm’s theory rejects one-half of the eigenvalue-
eigenstate link, the approximate velocity eigenstate is physically inter-
pretable on Bohm’s theory. More generally, we should note that merely
solving the problem of time doesn’t entail one has resolved the notorious
measurement problem. Left uninterpreted, quantum cosmology still suf-
fers from the problem of making sense of superpositions, a problem which
Bohm’s theory nicely resolves.?

?In personal communication with the author we have recently learned that Shtanov (1995)
independently derives essentially the same point as this note.
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