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Readers familiar with the workhorse of cosmology, the hot big bang model, may think that cosmol-
ogy raises little of interest about time. As cosmological models are just relativistic spacetimes, time 
is understood as it is in relativity theory, and all cosmology adds is a few bells and whistles such as 
inflation and the big bang and no more. The aim of this chapter is to show that this opinion is not 
completely right—and may well be dead wrong. In our survey, we show how the hot big bang model 
invites deep questions about the nature of time, how inflationary cosmology has led to interesting 
new perspectives on time, and how cosmological speculation continues to entertain dramatically dif-
ferent models of time altogether. Together these issues indicate that the philosopher interested in the 
nature of time would do well to know a little about modern cosmology. 

Different claims about time have long been at the heart of cosmology.1 Ancient creation myths 
disagree over whether time is finite or infinite, linear or circular. This speculation led to Kant com-
plaining in his famous antinomies that metaphysical reasoning about the nature of time leads to a 
“euthanasia of reason.” But neither Kant’s worry nor cosmology becoming a modern science suc-
ceeded in ending the speculation. Einstein’s first model of the universe portrays a temporally infinite 
universe, where space is edgeless and its material contents unchanging. One of the more popular 
versions of the big bang model is temporally finite: it begins with a bang and ends with a crunch. 
Later, Bondi and Gold’s rival to the hot big bang, the steady-state theory, is, like Einstein’s uni-
verse, premised on the idea that the large scale features of the universe don’t change in space or 
time (the so-called “perfect cosmological principle”). Rather more exotic ideas followed: Milne, 
for example, abandoned relativity theory and posited two times nonlinearly related to one another 
(Kragh, 1996, 61ff.). Today the speculations continue. Often motivated by quantum considerations, 
one finds plenty of alternative cosmologies to the big bang model’s contemporary successor, the 
!CDM model. These alternatives range from cyclic time universes, to string-theoretic “branes” col-
liding in a high-dimensional space, to eternally inflating multiverses chock full of bubble universes 
(Kragh, 2011). 

The reason for so much variety in cosmological possibility is simple: the universe is really big and 
what we can see is really small. We are, in other words, faced with severe observational limitations 
in the context of cosmology (Ellis, 2007) and hence a severe underdetermination of cosmological 
modeling (Butterfield, 2014). According to relativity theory we can at best only detect signals from 
events within or on our past light cone—this is the “observable universe” in the maximal sense. 
According to the standard big bang model the observable universe is further limited physically by the 
existence of a surface of last scattering. Before the time of this event (decoupling) light was tightly 
coupled to matter such that it could not travel in space and time to our telescopes here and now. 
This essentially means that we don’t have observational access to the very early universe. Since the 
entire universe is most likely much, much larger than the observable universe, what we can verify 
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observationally gives us a relatively weak handle on the nature of the cosmos at large. Thus, many
genuinely scientific models can plausibly fit the same observations, since the universe may well be
very different outside the observational scope of our telescopes.

Furthermore, our astronomical and cosmological observations themselves are heavily theory- and
model-laden. Astronomy reveals just how much our judgments of distances, angles, and even objects
depend on background assumptions about the nature of astrophysical objects, the geometry of the
universe, etc.2 And a related additional consideration is that confidence in our own theories runs low
in various cosmological regimes. For example, the big bang model posits that the universe began with
an initial singularity. But should we trust general relativity at the high temperatures and energies of
the big bang itself? And does the addition of inflation to the big bang model modify this expectation?
How might the big bang story be modified by quantum effects from an expected future theory of
quantum gravity? All this uncertainty about how to model the unobservable universe opens up space
for cosmological models that feature different perspectives on time, which means that speculation
about time in cosmology flourishes as much as—if not even more than—ever, despite the subject
now having more and better empirical data than it has enjoyed before.

After a brief treatment of time in the standard model, we hope to give the reader a sense of some
of the live options available for time in cosmology which are of philosophical interest. Although time
may be infinite, space is not; as a result, our discussion necessarily will be abbreviated and selective.

51.1 Time in the Standard Model
The current standard model of cosmology, as mentioned, is usually called the 3CDM model. It
extends the classic hot big bang model, which includes only normal matter and radiation, by including
exotic cold dark matter (CDM), the more exotic dark energy (3, the usual symbol for Einstein’s
cosmological constant), and a stage of inflation in the early universe that seeds the initial perturbations
which give rise to structure in the universe.3 The theoretical core of the standard model is the general
theory of relativity, which models the universe as a four-dimensional spacetime manifold M endowed
with a pseudo-Riemannian metric g and matter-energy distribution T .

Observations suggest that the universe looks pretty much the same in every direction. Supposing
that the same holds at every other location in the universe leads one to posit the cosmological princi-
ple: the assumption that the universe is spatially homogeneous and isotropic (Beisbart and Jung, 2006).
Applying this principle to general relativity requires presuming that there is a congruence of timelike
curves in the spacetime manifold M which foliates it into a one-parameter (�) family of spacelike
hypersurfaces 6� of constant intrinsic curvature  (which can be positively curved like a sphere, flat
like a plane, or negatively curved like a hyperbolic surface). The matter-energy distribution T in such
a spacetime takes the form of a perfect fluid with constant density ⇢ and pressure p on the hyper-
surfaces of constant curvature. The collection of relativistic spacetimes that meet these conditions are
usually known as the Friedman-Robertson-Walker (FRW) or Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) spacetimes.

One usually thinks of the members of the family of hypersurfaces 6� as representing space and
� as representing time. Relativity, of course, permits the choice of another congruence of timelike
curves which also foliate M into “spaces.” So the sense in which � represents time is relative to the
choice of congruence that gives rise to it as a parameter. Under the assumption of the cosmological
principle and choosing a foliation such that the corresponding spaces have constant curvature reduces
Einstein’s field equations to the following two, usually called the Friedman equations:

4
Ḣ + ⇡(⇢ + 3p) + H2 = 0; (51.1)

3

⇢̇ = �3H(⇢ + p), (51.2)
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where H, the Hubble parameter, represents the expansion rate of space, and overdots represent time
derivatives with respect to the chosen standard of time. Thus the first equation concerns the acceler-
ation of the expansion of space (Ḣ); the second is a continuity equation for the “cosmic fluid,” which
consists of radiation, dust, dark matter, dark energy, etc.

There is a natural standard of time to use in a non-vacuum FRW spacetime: the proper time
of anything not moving with respect to the cosmic fluid. Hypothetical objects that are at rest with
respect to it are called fundamental observers. Galaxies, for example, are approximately fundamental
observers, since they do not move much with respect to the background fluid. The proper time of
the cosmic fluid, which we will denote by t, is generally known as cosmic time.

Nevertheless, although the decomposition from above naturally picks out a particular time func-
tion (t), the theory is still entirely relativistic. We chose to foliate spacetime into slices of constant
spatial curvature, but we could just as well have chosen an infinity of other foliations. It is therefore
only when we choose the natural foliation and use cosmic time that one can claim that the universe is
13.8 billion years old—this duration is determined by the proper time of a hypothetical fundamental
observer from the beginning of time until now. By contrast, to photons the world just began. Rel-
ativity doesn’t choose sides over who is right about time, fundamental observers, arbitrarily moving
observers, or photons. All are.

51.2 Breaking Up Spacetime
One of the central lessons of contemporary physics is that space and time, traditionally thought to
be conceptually independent, are replaced by a unified spacetime. It may come as a surprise to many
readers to discover that some physicists and philosophers want to use cosmology to undo this revo-
lution and break up spacetime back into space and time. By “break up” we mean a genuine divorce,
at the level of basic theory, and not merely a provisional separation for pragmatic calculational con-
venience (which is done all the time in numerical relativity). The thought behind the machinations
is that cosmology actually justifies resurrecting a Newtonian-like absolute time.

Indeed, one finds the idea arising just after relativity was born and espoused by some of cosmol-
ogy’s biggest stars. For instance, just three years after general relativity was discovered and only one
year after experimentally confirming it, Sir Arthur Eddington in 1920 wrote that “absolute space and
time are restored for phenomena on a cosmical scale,” hinting even that this cosmic time is God’s
time (Eddington, 1920 [1987], p. 168). Sir James Jeans writes:

It was natural to try in the first instance to retain the symmetry between space and
time which had figured so prominently in [special relativity], but this was soon found
to be impossible. If the theory of relativity was to be enlarged so as to cover the facts
of astronomy, then the symmetry between space and time which had hitherto prevailed
must be discarded. Thus time regained a real objective existence, although only on the
astronomical scale, and with reference to astronomical phenomena. (Jeans, 1935, p. 21)

That figures as significant as Eddington and Jeans suggest ditching the core postulates of relativity
may be somewhat shocking. Both seemed to want to restore an “intuitive” notion of time, although
admittedly Eddington gave off mixed signals on that matter (Canales, 2015).

Perhaps more isn’t made of this rejection because it’s not entirely clear whether either had a full
rejection of relativity in mind. Eddington says that relativity is “reduced to a local phenomenon.” Did
he really want to abandon the core conceptual insights of a theory that he helped confirm in local
physics (i.e., the solar system) when applied to the universe? Similarly, Jeans’s talk of time regaining
real objective existence but only on the astronomical scale sounds somewhat obscure conceptually: what
exactly is “real” and “objective” about time on the astronomical scale and, more importantly, what
does such a time have to do with the intuitive time of our experiences?
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Today those desirous of a sundering of spacetime are somewhat clearer. Their motivations are 
diverse. Some file “philosophical” grounds for divorce, and others make their case for the sake of 
new physics. The first group, like Eddington and Jeans, wish to free “intuitive” metaphysical models 
of time from the clutches of relativity (Lucas and Hodgson, 1990; Crisp, 2008; Swinburne, 2008). 
The idea that the present is special, that it is what exists or what becomes, is famously threatened by 
relativity.4 Finding a scientifically respectable absolute time according to which the world comes into 
being would give these prospective divorcees the “proof ” that they need. The second group is instead 
worried about quantum mechanics and, more specifically, its famous measurement problem. Some 
solutions to this problem pick out a preferred foliation of spacetime. Some hope that cosmology 
reveals this preferred foliation in its choice of a natural time function (Roser and Valentini, 2014). 

What is this special time function? Hawking proved that as long as a solution of Einstein’s field 
equations is “causally stable” (loosely put, it doesn’t permit time travel or anything close to time travel) 
the spacetime described possesses a global function whose value increases along every future directed 
timelike or null worldline (Hawking, 1969). These time functions are a dime a dozen however: 
typically there are an infinite number definable in any causally stable spacetime. Enter cosmology. 
The hope is that cosmological considerations will narrow down these time functions to a smaller set, 
or better, to something unique. 

The key idea is to look at the (approximate) symmetries of the cosmological spacetimes. Obser-
vations of the 2.7K cosmic microwave background (CMB) radiation and galaxy counts support the 
claim that at a large scale the universe is amazingly spatially isotropic. Deviations exist, but they are 
slight. The inference to global homogeneity is more theoretical. If the universe were spatially inho-
mogeneous, then for it to look so isotropic to us would mean we are very specially placed. Since to 
us modern Copernicans it seems plausible that our location is not special, we assume spatial homo-
geneity too, i.e., we naturally assume the cosmological principle mentioned above. In the context of 
general relativity, that gives us the constant (spatial) curvature spacetimes of FRW, described above, 
and FRW’s special time function t, the cosmic time. 

However, we should surely not insist on perfect isotropy and homogeneity, since our universe 
is definitely not perfectly isotropic and homogeneous. So a time function somewhat less tailored 
to FRW is desirable. One especially popular geometrical choice is York or constant mean curvature 
time (York, 1972). To understand York time, consider the collection of relativistic spacetimes (M,�g). 
Some of these spacetimes can be foliated by everywhere spacelike three-dimensional hypersurfaces. 
The four- dimensional geometry obviously constrains the geometry on these spatial leaves; in fact, it 
induces on each hypersurface "�a spatial three-dimensional metric h (which determines the intrin-
sic curvature of ") and an “extrinsic curvature” K (which, roughly speaking, describes how "� is 
embedded in the entire spacetime M). Thinking of these in dynamical terms, e.g. in the initial value 
formulation of general relativity, you can regard h as a configurational, position-like variable and K 
as its conjugate momentum (which therefore says something about h’s time development). Now, on 
a select set of these spacetimes, we can find some that permit a foliation where the mean extrinsic 
curvature associated with each spatial slice is constant. The mean, or average, extrinsic curvature is 
given by the trace of K , Tr K . For these spacetimes each leaf of the foliation is a hypersurface whose 
mean (extrinsic) curvature is equal to a constant, i.e., Tr K =�n. York time is then defined as a time 
function t : M →� I ⊂�R� such that its level sets t−1(I)�are the hypersurfaces with mean curvature 
equal to n, for every n ∈� I (Andersson et al., 2012). In short, each “tick” of the York clock reads 
a value of constant mean curvature. (The global spatial homogeneity of FRW spatial hypersurfaces 
implies that they have constant mean curvature, so York time coincides with cosmic time in FRW 
spacetimes.) 

Constant mean curvature is an interesting topic in differential geometry and has many physical 
applications. York time too has a number of virtues, especially when it comes to numerical relativity 
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and actual calculation. But in the present context what makes constant mean curvature and York time 
attractive is that under certain conditions it is provably unique (Marsden and Tipler, 1980; Rendall, 
1996). For instance, restrict attention to globally hyperbolic spacetimes with a compact Cauchy 
hypersurface, a vanishing cosmological constant, and satisfying the so-called strong energy condition. 
Then, except for some outlier cases (Tr K =�0), the York time is provably unique. And as those three 
conditions are all geometrical in nature, one has a foliation that is in some sense geometrically unique 
(more below). 

From a relativistic perspective, there is nothing surprising going on here. With York time one 
has just picked a special foliation tied to the curvature properties of certain spacetimes, and in some 
sufficiently special spacetimes this choice is natural. But one is no more forced to pick out a constant 
mean curvature foliation than to pick a different foliation, such as Misner’s -log t, where t is the above 
FRW time (Misner, 1969). With York time in hand, however, those with the motivations described 
above now issue the divorce papers to spacetime. For tensers, no less than existence itself unfolds 
according to York time. And for those worried about quantum mechanics, the proposal is to identify 
the foliation quantum mechanics uses with York time. Physics or metaphysics marches to the beat of 
York. As for relativity, it can be abandoned. For the physics within the domain of special relativity, one 
sides with Lorentz over Einstein. For larger scales, one uses only the solutions of Einstein’s equations 
that permit York time. The full possibilities allowed by general relativity are viewed as unnecessary 
extravagance. 

Many commentators have questioned this identification of York time with metaphysical or quan-
tum time. We cannot do justice to all the discussion here (see, for instance, Bourne, 2004; Callender, 
2017). Perhaps the largest question that needs answering is simply: Why? Why think that metaphysi-
cal time or quantum time “cares” about constant mean curvature? Nothing in either metaphysics or 
(non-gravitational) quantum mechanics suggests any connection to curvature, let alone constant mean 
curvature. Why would metaphysical or quantum time care about maintaining an average? Here we 
will confine ourselves to just a couple of remarks. 

First, the claims of the uniqueness of York time seem overblown—at least from the perspective of 
taking it seriously as a physically (as opposed to calculationally) preferred time. The uniqueness results 
occur only after quite a severe shrinking of the space of Einstein’s solutions. The assumptions about a 
compact spatial slice, global hyperbolicity, the behavior of energy, and the cosmological constant may 
not hold. Probably they don’t. But that is not all. Uniqueness is one thing, but existence is another. 
When does the York time exist? There are in fact many spacetimes that meet the above conditions 
but where York time does not exist. The “geometric invariance” of York time obtains only in a 
special class of spacetimes, one hardly demanded by observation. 

Second, we suspect that many of the philosophical devotees of York time pick it simply because 
it seems to them to yield an attractive intuitive picture of cosmological evolution—that it is more or 
less like the familiar old absolute time of Newton or of their manifest weltbild. To chip away a little 
at this, we’ll here note two relevant facts that we haven’t seen in the philosophical literature. One, 
what makes York time great for numerical relativity but a bit weird for metaphysics is its avoidance 
of singularities. York time is definable in universes which, like ours (at least classically), contain black 
holes harboring singularities. The demand for constant mean curvature makes the foliation avoid 
these singularities, exponentially slowing York time to avoid them and lumping them all together at 
the “end of time.” As a result, a singularity in a black hole born “today” (according to “intuitive” 
time) and one born a million years in your future (again, according to “intuitive” time) happen at 
the same moment of York time (Smarr and York, 1978) (see Figure 51.1). Two, during inflation the 
universe is said to enter into a de Sitter phase, that is, be describable by de Sitter spacetime. In the 
usual coordinates of de Sitter, all the t =� constant slices do indeed have constant curvature, which 
is nice; however, they all have the same value. The York clock seems to stop in the de Sitter phase! 
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Figure 51.1 A depiction of York time in a spacetime with singularities. Adapted from similar figures in Qadir
and Wheeler (1985)

None of these small observations constitute a knock-down objection to identifying York time with
metaphysical or quantum time. But they should suggest to those hoping to rescue “intuitive time”
that it’s not really so much like our old friend absolute time as they might wish.

51.3 Cosmological Speculations
As we just saw, the use of distinguished foliations in cosmology invites deep questions about the
nature of time and the significance of relativity. Putting those questions aside, the nature of time is
pretty simple according to the standard big bang model: the universe began a finite amount of time
to the past and will continue to expand indefinitely and ever faster to the future under the influence
of dark energy; in addition, the entropy of its matter-energy distribution increases irresolutely toward
this future; and, well, that’s about it.

More specifically, due to the singularity theorems of Penrose, Hawking, and Geroch in the 1960s,
the standard big bang model seems firmly committed to a past initial singularity (Smeenk, 2013).
This basic consequence is intuitively suggested in typical expanding FRW universes since, assuming
a positive cosmological constant and gravitating matter, the scale factor goes to zero and the matter
density blows up as one goes back in time. The Hawking-Penrose singularity theorem makes the
argument precise and therefore seems to provide an answer to the age old question about whether
time is finite or infinite, the subject of Kant’s famous first antinomy: time is finite toward the past but
infinite toward the future (for flat and open cosmologies). Moreover, the geometrical modeling used
in the big bang model allows one to skirt one of Kant’s main worries, as the past is finite even though
there is no “first” moment, just as there is no first positive real number.

That straightforward picture, however, is under threat from speculation hoping to address various
outstanding theoretical problems. Modifications to the above picture—some quite dramatic—are fre-
quently suggested based on cosmological applications of research programs in quantum gravity (e.g.
superstring theory, loop quantum gravity) and from attempts to better understand inflation (e.g. eter-
nal inflation). Indeed, despite its successes, inflation brings with it its own problems, and new develop-
ments of the general theory are regularly being proposed to escape these worries. These modifications
essentially arise from what would be new physics. But modifications to the straightforward picture are
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often also connected to solutions of other perceived problems with the standard cosmological model. 
For instance, many physicists find the initial singularity predicted by the singularity theorems of gen-
eral relativity to be a sign of the theory breaking down. They suspect that quantum effects will avoid 
these singularities. Similarly, many find the posit that the universe began in extremely low-entropy 
distasteful, or at least in need of explanation (Carroll, 2010). Can a cosmological model be devised 
that makes the past low-entropy a natural product of cosmological evolution as opposed to a special 
posit? Philosophers have debated whether these problems are really so dire.5 Whether they are or 
not, eliminating one or both has led to the development of interesting new cosmological models that 
part ways in various respects with the standard picture of time. Here we briefly highlight some of the 
most prominent ideas that have gained currency. 

51.3.1� Multiverses�and�the�Past�
One major development is the concept of a multiverse. This idea, that the universe given in the stan-
dard model is just one of a plurality of different universes, has become mainstream in cosmology and 
theoretical physics more generally. Interest in the multiverse derives from influential arguments that 
claim that the multiverse is a natural consequence of inflationary (Steinhardt, 1983; Vilenkin, 1983; 
Linde, 1986) and string-theoretic scenarios (Susskind, 2007). On the scenario known as eternal infla-
tion, for example, a physical mechanism creates “bubble universes”—causally disconnected “pocket” 
universes—out of an inflating background spacetime. Insofar as one takes inflation to be an important 
part of the contemporary standard model of cosmology (the !CDM model), as cosmologists do, one 
has at least some reason to take the multiverse seriously. And clearly the idea of a multiverse opens 
up some intriguing new possibilities for the nature of time, possibilities that have only recently been 
explored. 

The basic picture in eternal inflation is that the universe does not “enter into a de Sitter phase,” as 
said above. Instead, the universe is essentially de Sitter space. The de Sitter universe is the relativistic 
spacetime analog of a sphere, just as Minkowski space is the relativistic spacetime analog of a plane. 
As such, it is the maximally symmetric spacetime with positive curvature (although it can be given 
a flat spatial slicing like the k =�0 FRW spacetime). In cosmology the accelerated expansion of de 
Sitter space is driven by a cosmological constant-like “inflaton” field in some appropriate potential. If 
spacetime were merely de Sitter, then nothing much would happen of course, apart from continuous 
exponential expansion. Quantum fluctuations of the inflaton field, however, can lead patches of 
spacetime to tunnel to another state and cease inflating, in such a way that a bubble universe may 
be born in a hot, dense big bang-like state. As bubble universes are continuously born, the space in 
between the universes continues to expand (although there is generally some probability that bubble 
universes may collide; these collisions may even leave a detectable footprint in, for example, the 
CMB). Thus one has an eternally inflating (toward the future) background spacetime which spawns 
a multiverse of big-bang-universe-like bubble universes, each of which has its own arrow of time, 
beginning, and (potentially, if it recollapses) ending.6 

While many questions and concerns arise about the universe, let’s focus on the traditional one 
about whether time is finite or infinite. Singularity theorems à la Penrose, Hawking, and Geroch do 
not obtain in eternally inflating spacetimes. These theorems make assumptions, typically about the 
behavior of matter-energy, that are not true in eternal inflation. So we don’t have the same assurance 
that the world begins with a bang in an inflationary scenario as we do in a classical non-inflationary 
spacetime. Nonetheless, many cosmologists believe that the world still begins with a past singularity. 
They appeal to influential arguments by Vilenkin, Borde, and Guth that show that the geodesics 
of the inflationary multiverse scenario (eternal inflation) are past-incomplete, and hence that the 
inflationary multiverse had a beginning (Farhi and Guth, 1987; Borde and Vilenkin, 1996; Borde 
et al., 2003). These arguments have been called “singularity theorems” in analogy with the original 
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classical singularity theorems. On the basis of these theorems, it would seem that the fundamental 
picture of time in the multiverse remains substantively the same as in the standard model, namely, 
finite to the past and infinite to the future (although of course there is the novelty associated with the 
birthing of pocket universes, which introduces times local to each universe). 

But is that judgment correct? The eternal inflation “singularity theorems” are of quite a differ-
ent character from those of Penrose, Hawking, and Geroch. They do not, for instance, make any 
assumptions about the behavior of energy, making them surprisingly general, nor do they apply to 
all past directed geodesics (past comoving geodesics are allowed to escape to past infinity). The main 
difference is that the geodesic incompleteness of eternally inflating spacetimes is not due to spacetime 
singularities but rather due to the spacetime being “incomplete,” i.e., extendible. This observation 
and the physical plausibility of a steady-state-like eternal inflation have led Aguirre and Gratton, for 
example, to propose an extension which would make eternal inflation “two-sided” and geodesi-
cally complete. In their model eternal inflation proceeds in opposite temporal directions from a null 
boundary between the two regions, each causally-disconnected half of the entire spacetime birthing 
bubble universes to their respective futures (Aguirre and Gratton, 2002, 2003). Nonetheless, there is 
a clear sense in which time is infinite in both directions, since the arrows are connected at the bound-
ary. Thus Aguirre and Gratton’s clever maneuver would seem to partially restore Kant’s old antinomy 
about the age of the universe, at least for eternally inflating spacetimes, since such spacetimes may 
seemingly be either finite or infinite toward the past. 

51.3.2� Bouncing�Through�the�Big�Bang�
Dissatisfaction with inflationary theory, a distaste for singularities, or an aversion to multiverses has 
led many to desire an alternative to the mainstream views in cosmology. Some propose that a big bang 
singularity can be avoided by a physical mechanism which causes a “bounce” before a singularity is 
reached. Thereby an old, collapsing (epoch of the) universe leads to a new (epoch of the) universe, 
one which looks just like the beginning of a classical big bang universe. Although the proposals 
flowing from the aforementioned motivations differ, they often have similar ideas so it is common 
to lump them together as the class of “bouncing” or “cyclical” cosmological models.7 On some 
models this “bounce” happens only once; on other models it repeats and the universe’s growing 
and shrinking resembles that of a linked set of sausages. In either case, what we thought of as the 
past-finite universe is only one epoch of a past-infinite universe of multiple epochs. 

There are even more exotic possibilities though. Penrose proposes a model he calls the conformal 
cyclic cosmology: he glues together the “end” of what we thought was our universe, namely the 
stretched out accelerated infinite expansion, with the beginning of what we thought was our universe, 
the big bang. He is able to make this identification due to a conjecture that both the beginning and 
the end are conformally invariant. That is, despite appearing counterintuitive because of their size 
differences, the metrics describing the beginning and the end are conjectured to be the same except 
for scale—distances are different but angles are the same. In this theory, what one takes to be inflation 
is actually the end of a previous universe. This process repeats in a cycle and hence is an example of 
an infinitely recurring universe. Unlike in the “sausage link” model, where contracted big bangs are 
glued together, the conformal rescaling allows Penrose to glue together large expanded regions with 
small contracted regions (Figure 51.2). 

It should be noted that bouncing and cyclical models do have a long history in cosmological 
thought, and indeed they have periodically appeared as scientific proposals in the 20th century.8 

Thus the recent spate of them is not entirely a novelty. What is novel is the ever- increasing breadth 
of these proposals and the ingenious application of theoretical resources. What makes these models 
more than just an exercise in pure reasoning is that they can be used to make predictions about (what 
in the standard model would be called) the early universe, in particular the primordial spectrum of 
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Figure 51.2 Aeons of time in a conformal cyclic universe 

inhomogeneities that gave rise to the formation of stars and galaxies. Whether any of the predictions 
of these higher speculations will be confirmed (or are even confirmable) of course remains to be 
seen. But for philosophers of time, at least, it is worth noting that for now many of these remarkable 
proposals provide viable alternatives to the default view that time is finite to the past. 

51.3.3� Eliminating�the�Past�Hypothesis�
To explain the thermodynamic arrow of time, most physicists and philosophers feel that one must, 
in some sense or other, assume that the early universe began in a state of extremely low-entropy. 
Making this assumption, typical initial states will then be overwhelmingly likely to evolve toward 
higher entropy states. Distinguished physicists such as Boltzmann and Feynman saw the need for such 
an initial posit and subsequent philosophers have generally agreed with it. Following Albert (2000), 
this assumption is often dubbed the “past hypothesis.”9 

As noted already, several physicists and philosophers feel that explaining the low-entropy state 
of the very early universe is one of the great mysteries still remaining in physics. The goal is to 
find a dynamical origin of the past hypothesis. If one can show that dynamical laws necessitate a 
low-entropy state in our local past, then we can get rid of the otherwise ad hoc past hypothesis. To 
this end, several physicists have in recent years proposed cosmological models that do not require 
the invocation of the past hypothesis (Aguirre and Gratton, 2003; Carroll and Chen, 2004; Barbour 
et al., 2014; Goldstein et al., 2016). Some of these approaches are closely connected to the topics of 
the previous subsections: the Carroll and Chen (2004) model, like the Aguirre and Gratton (2003) 
model,10 is an eternally inflating multiverse with dual arrows of time, while the Barbour et al. (2014) 
model is a version of a “one bounce” cosmology driven by gravity. 

Cosmological considerations of course have always been at the heart of discussions of time’s 
arrow. Boltzmann’s famous cosmological story was in fact not entirely unlike the bouncing universe 
scenarios. Thermal fluctuations to states of low-entropy are in effect past boundaries for two 
“universes,” each with an oppositely directed arrow of time, pointed in the direction of increasing 
entropy (Figure 51.3). Later, approximately 30 years after the Hubble expansion of the universe was 
discovered, the cosmologist Thomas Gold suggested that expansion caused the thermodynamic arrow 
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Figure 51.3 The arrow of time aligning with increasing entropy in “two-sided” universes

of time (Gold, 1962). Boltzmann’s theory was roundly dismissed when he proposed it, as he wrote
well before the advent of modern cosmology. And Gold’s idea was criticized by many, as the link
between expansion and thermodynamic entropy wasn’t as tight as Gold hoped.

In the model of Goldstein et al. (2016), we see something like Boltzmann’s original idea being
floated again, possibly also connected to something like Gold’s original idea. They examine a toy
model, a large classical gas of non-interacting particles in Euclidean space. Measuring the size of 3d
space occupied by the gas, they find that normal evolution takes the gas to a central time where the gas
occupies a uniquely minimum size. They further show that the entropy associated with this measure
of system size grows in both temporal directions away from this central time. Each solution comes
with its own past hypothesis, if you like, at its central time. No special additional posit is necessary.
Interestingly, this is compatible with a Boltzmannian picture of statistical mechanics, one where most
microstates realizing low-entropy macrostates evolve into states realizing higher entropy macrostates.
This picture is a lot like Boltzmann’s original idea, except that the matter and size of the space it
occupies grows without bound and hence “bounces” once, unlike in Boltzmann’s model. Insofar as
the model is connected to expansion, there is also an echo of Gold’s idea here too. Gold’s idea faltered
because there was no necessary link between expansion and entropy increase. Expansion can be an
isentropic process, so it is hard to see how it could cause the thermodynamic arrow. Whether the
present idea suffers a similar fate, however, remains to be seen.

Notes
1 (Dainton 2010) is a good philosophical introduction to the philosophy of space and time. (Smeenk 2013)

provides an accessible review on the topic of time in cosmology. (Harrison 2000) is a classic physics text
on cosmology that is more oriented toward history and philosophy than usual. (Kragh 1996) and (Longair
2006) are useful historical references for 20th century cosmology.

2 See Anderl’s contribution to this volume for more details on issues with astrophysical evidence.
3 For more on dark energy and dark matter, see Jacquart’s contribution to this volume. For more on inflation,

see Ijjas’s contribution to this volume.
4 See Eagle’s contribution to this volume for more on this threat.
5 See, e.g., (Earman 1995) for discussion of singularities and (Callender 2004) and (Price 2004) on the low-

entropy posit.
6 See Ijjas’s contribution to this volume for more on eternal inflation.
7 Prominent examples include those discussed in (Khoury et al. 2001); Steinhardt and (Turok 2007); (Ashtekar

2009); (Penrose 2010). A recent review of bouncing models is (Battefeld and Peter 2014).
8 A fine survey of this history can be found in (Kragh 2011, Ch. 8).
9 See Shahvisi’s contribution to this volume for more on the past hypothesis and entropy increase.

10 See (Vilenkin 2013) for discussion of these models in relation to the arrow of time.
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Further Reading from the Editors
In this volume, Chapter 25 by N. Huggett on time as emergent and Chapter 26 by K. Thébault on the problem
of time are both relevant here. C. Smeenk, “Time in Cosmology”, in A. Bardon and H. Dyke (eds.), The
Blackwell Companion to the Philosophy of Time (Oxford: Blackwell, 2013): pp. 201–219 is an additional general
survey of the present topic. J. Earman, Bangs, Crunches, Whimpers and Shrieks (New York: Oxford University
Press, 1995) provides a review of relevant technical material. C. Callender, What Makes Time Special?. (Oxford:
Oxford University Press, 2017) explores the question of what distinguishes time from other physical dimensions.
S. Carroll, From Eternity to Here (New York: Plume, 2010) is a big-picture overview directed at a popular
audience.
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