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Abstract

Programs in quantum gravity often involve formalisms that are supposedly funda-
mentally timeless, with physicists claiming that time emerges from fundamentally
timeless physics. In the semiclassical time program time arises only after approxi-
mations are taken. We show that the usual physical justifications for these approx-
imations assume that time already exists. The semiclassical time approach turns
out to be either unjustified or circular in deriving time from no–time.

1 Introduction

Programs in quantum gravity often result in formalisms that are said to be fundamentally
timeless. Because we observe change, it’s important that such programs recover time
from no-time in some way. One popular idea is that time emerges from fundamentally
timeless physics, like how macroscopic color arises from fundamentally uncolored basic
physics. An example is the semiclassical time program in canonical quantum gravity,
where the key idea is that time emerges from fundamentally timeless physics as a result
of semiclassical approximations. Nothing at the fundamental level supposedly plays the
time role throughout any solution, but time emerges in some sectors in the state space
of some solutions which are approximately classical.

However, the comparison with color suggests an obvious worry: circularity. Physi-
cally, color only emerges from uncolored matter diachronically. Color arises from the
interaction of observers like us with matter behaving a certain way across a temporal
interval. Replace color with time and the threat is obvious: if time emerges from no-time
but the emergence itself requires time, then we can’t really say we’ve derived time from
no-time. Time emerges if we blur our vision, but if blurring takes time then time never
disappeared.

We want to raise this objection in a very sharp way for the semiclassical time program
by focusing specifically on the approximations necessary to derive time from no-time. We
argue that time implicitly sneaks its way back in via the physical justifications behind
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these approximations. If one is allowed to assume anything, one can derive any equation
from any other. Physical assumptions need physical warrant. If, as we will argue, that
warrant assumes time exists, then either we were unjustified in applying the approxima-
tions because we were applying them to timeless solutions, or the derivation succeeds
on pains of circularity. We believe other programs claiming to derive time from no-time
may also be susceptible to the same worry, but we will not demonstrate that here.

2 The Problem of Time and Emergence of Semiclassical Time

Quantum gravity seeks to reconcile our best theory of gravity, general relativity, with our
best theory of matter, quantum theory. Many different strategies exist for doing so, e.g.,
string theory, but here we focus on the oldest canonical approach, quantum geometro-
dynamics, and its recovery of semiclassical time. We do so because this recovery has
been rigorously developed. We expect, however, that many of our lessons will generalise
elsewhere.

Canonical approaches employ a Hamiltonian formalism that is then quantized. To
do this for gravity, one must cast general relativity into its Hamiltonian “3+1” form,
where one decomposes spacetime into leaves of spacelike hypersurfaces. The Hamiltonian
framework demands canonical variables and conjugate momenta. For gravity, the basic
variable is the three-dimensional spatial metric characterizing the spacelike hypersurfaces
and the conjugate momentum is defined in terms of the trace of the spatial metric’s
extrinsic curvature. In classical particle mechanics the Hamiltonian governs the spatial
configuration of particles through time; in classical Hamiltonian general relativity, the
Hamiltonian governs the spatial geometry itself through time. Once cast in this form, it
is then time to quantize.

The counterpart of the quantum state is a functional operating in a configuration space
of spatial three-metrics. To quantize, we turn the variables into operators. Trouble arises,
however, because general relativity is a constrained Hamiltonian system. One of the con-
straints arises due to the time reparameterization freedom we have in general relativity –
we can slice up or foliate spacetime in many different ways. This constraint, the Hamil-
tonian constraint, demands that the Hamiltonian vanish. If we follow Dirac’s procedure
when quantizing a constrained system, the constraint is imposed as a restriction on phys-
ically possible wave-functions. Intuitively, the idea is that the operator shouldn’t rotate
the quantum state into physically unrealizable states. In geometrodynamics, making the
Hamiltonian an operator and imposing the constraint yields:

ĤΨ(hab(x), φ) = 0 (1)

i.e., the famous Wheeler-DeWitt (WD) equation. Ĥ is the Hamiltonian operator for both
gravity and matter, and Ψ is the WD wave-functional which depends on the spatial three-
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geometries encoded by the spatial metric hab(x) and whatever matter fields we include,
e.g., φ (for simplicity, φ is usually a massive scalar field).

The core idea of the semiclassical time program is that time emerges if the gravitational
wave-functional is semiclassical. If it is not — if the gravitational field is quantum— then
the concept of time will not find any realizer. This idea was expressed by DeWitt (1967)
but developed by Banks (1985) in the canonical approach.1 The WD wave-functional
is, at the fundamental level, utterly timeless. But it nonetheless describes patterns
of correlations, just like a checkered shirt at an instant contains a spatial pattern of
correlations amongst stripes and colors. In the semiclassical interpretation, the idea is
that at a certain level of approximation, a pattern of correlations “looks” temporal, just
as a checkered shirt can look solidly colored if one zooms out far enough.

By “looks temporal” we mean that a parameter plays the time role. While defining
the time role could become quite messy and philosophical, this program adopts a very
minimal sufficient condition that seems quite plausible, namely, that something plays
the time role if it behaves as the “t” does in the ordinary time-dependent Schrödinger
equation (TDSE). In other words, if the matter fields depend on or vary with some
parameter in the same way as they depend on or vary with the “t” in the TDSE, that
warrants calling that parameter time.

Herein lies the key achievement of the semiclassical time program: given suitable
approximations, they show that the non-temporal gravitational fields hab can play the role
of time in a functional Schrödinger equation for the matter fields φ. If one approximates
from the WD equation appropriately, it looks like matter is evolving with respect to
time (a la a Schrödinger equation) against a classical gravitational curved spacetime
background (described by the semiclassical Einstein-Hamilton-Jacobi equation).

Let us now turn to the actual derivation of time and the functional Schrödinger
equation. Here we loosely follow a presentation by Derakhshani (2018) (but see also
Banks (1985, Appendix B)). The derivation has two crucial steps. One, it uses a Born-
Oppenheimer ansatz and writes the wave-functional of the universe in product form.
Two, it uses a WKB approximation on the gravity term in this product. The reader
can think of the first move as separating out a sub-system from the total system. The
second move then shows that when that sub-system behaves approximately classically,
it can function as a clock for the rest of the system.

We begin with a wave-functional that satisfies the WD equation

Ψ(hab, φ) (2)

and other necessary constraints. This describes a static wave in a high-dimensional
configuration space.

1See e.g. Kiefer 2004, Anderson 2007.
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Since hab depends on the Planck mass mp, which is extremely small, the idea of sep-
arating scales via a Born-Oppenheimer (BO) approximation is natural. This is because
quantum gravitational effects aren’t expected except near the Planck scale and hab de-
pends on mp. Hence we can separate the “heavy” part of the wave-function, χ(hab) from
the “light” part, ψ(φ, hab):

Ψ ≈ χ(hab)ψ(φ, hab) (3)

The idea will be to use the hab degrees of freedom as a clock for the light part φ.
In a WKB approximation, we first substitute the ansatz AeiS for a wave-function. We

do that for the first factor, the heavy subsystem, turning the wavefunction into

Ψ ≈ A(hab)eim2
pS(h)ψ(φ, hab) (4)

Next, expand S(h) as a power series in m2
p:

S = m2
pS0 + S1 +m−2

p S2... (5)

Then, as usual in WKB, we plug the S0 and S1 terms each back into the wave equa-
tion and solve. In the ordinary quantum mechanics case, the 0th order terms returns a
Hamilton-Jacobi equation and the 1st order term returns a continuity equation. Essen-
tially the same happens here. In particular, solving to leading order m2

p, we derive a
semiclassical gravitational Hamilton-Jacobi equation.

Take a solution S of this set of equations. Based on experience with geometric optics
and quantum theory, we know S defines in superspace a vector field ∇S whose integral
curves can be parametrized by a time. Skipping the details, this can be accomplished
via a directional derivative

∂

∂t
χ(φ, t) =

∞∑
n=1

d3xḣab(x, t)
∂

∂hab(x)χ(hab, φ) (6)

that we might call WKB time.
Notice what we have done. The approximations yield solutions of a classical-like general

relativistic equation. We identified the natural time parameter in such solutions. Now
we derive a TDSE using this time.

When we plugged our WKB approximation (4) into equation (1), we found that S(h)
satisfies the semiclassical classical gravitational equations up to leading order in mp. Now
we want to do the same but focus on χ(φ, h). So we expand

χ(φ, h) = ψ(φ, h) +
∞∑

n=1

(
m−2

p

)n
ψ(n)(φ, h) (7)
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and plug this into (1) using our WKB approximation Ψ ≈ A(h)eim2
pS(h)χ(φ, h). Keeping

only lowest order terms and doing a lot of massaging, we find that ψ(φ, h) satisfies a
functional Schrödinger equation

i
∂

∂t
ψ(φ, t;h) = Ĥm(φ;h)ψ(φ, t;h) (8)

where Ĥ is a Hamiltonian-type term and ψ is evaluated at a solution hab, which itself is
a solution of the classical Einstein equations.

It is important to note that the “t” in (8) is the same as that in (6). The t we used to
parametrize the classical general relativistic solutions (corresponding to the first “heavy”
term in our factorization (3)) is used in a solution as a clock for the matter fields in the
WKB regime. We won’t delve into the rest of the theory; however, we should note that
we can also derive a continuity equation that justifies the use of the normal Born rule for
predictions from the theory, and furthermore using perturbation theory – by considering
the higher-order terms we have so far ignored – one can derive non-classical predictions.

In sum, the semiclassical derivation provides an elegant derivation of time from no-
time. Making a series of seemingly reasonable assumptions, a parameter that looks and
acts like time emerges. And if we agree that something that looks and acts like time is
time, then time emerges.

3 Justifying the Approximations

We jumped from one equation to another by expanding to leading order, focusing on
lowest order, assuming the wave-functional approximately factorises, and so on. What
justifies these steps? Approximations require a physical justification. At the level of pure
math, one can “derive” virtually any equation from any other if one is allowed to assume
anything. It makes no sense to say that one equation or quantity is “close” to another
absent a metric. We need a justification, and it is in this physical justification that we
believe time sneaks in.

To elaborate, we can treat a classical pendulum as approximately an undamped har-
monic oscillator. That is because, for small angles, sin θ = θ, which allows us to derive an
equation of motion for the pendulum that is the same as that of the harmonic oscillator.
A harmonic oscillator, we might say, “emerges” from the pendulum in the small angle
limit. But relative to some measurement standard, at some point an initial displacement
angle becomes too big and the approximation fails; that is, we notice deviations from the
derived equation of motion. Angles, theta, aren’t intrinsically big or small. They are big
or small relative to a standard. Typically that standard refers to the observational or
measurement capacities of an observer. The validity of the approximation hangs in part
on an error analysis of our measurement technique. Coarse measurements will allow the
approximation to be good for greater values of θ than finer measurements.
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This observation leads to a subtle problem for the semiclassical time program and
also our analysis here. Since we don’t have a fully interpreted theory yet, one with
observers, we don’t know what this standard will be. When are (say) off-diagonal terms
in a matrix “small” and justifiably ignored? The answer is: when they’re irrelevant to the
observer (measurement, analysis, etc). But to introduce an observer to get the standard
for judging small, we effectively need to already have a time. Observation is a temporal
process, after all. So we can only justify an approximation by already introducing a time,
making the derivation circular. And minus an observer, we can’t say what “looks” like a
small difference that would warrant an approximation.

We’ll return to this point later, but for now we’ll keep things simple. We’ll point
out that the approximations used to derive semiclassical time are always warranted in
the rest of physics by appeal to an implicit time metric. Without the time metric, the
approximations seem physically unwarranted. We do not, and cannot, show that there
is no standard possible that would warrant the approximations. However, this point is
worryingly suspicious and throws down a challenge to the advocate of semiclassical time:
justify the approximations without appealing to a prior time standard.

Although the semiclassical time program has an estimated twenty assumptions (An-
derson 2007), here we concentrate on three: the Born Oppenheimer approximation, the
WKB approximation, and decoherence.

3.1 The Born-Oppenheimer Approximation

The usual story justifying the BO approximation in the semiclassical time program goes
like this: we can think of the entire universe as containing two kinds of subsystems, the
gravitational field h and the quantum matter fields φ. The masses associated with h
are ‘heavy’ in comparison to φ (in the sense of being much larger than mp),2 and so it
seems plausible that h is largely insensitive to φ. By contrast, φ, being small and light, is
sensitive to the big and heavy h. We can therefore assume that the wave-functional Ψ for
the entire system (the universe) can be approximately factorized into two wave-functions
χ(h) and ψ(φ, h), with χ associated with the heavier h, and ψ associated with the lighter
φ but also dependent on h, as in (3) above. This factorization, as we saw above, is a
necessary assumption in the derivation above.

On its face, the assumption doesn’t sneak time into the derivation. Some masses are
larger than others, and we expand accordingly. “Change” above needn’t be temporal
change.

But it might be. The BO approximation is motivated by an appeal to the “very
different scales” (Kiefer 2004, 164) that the gravitational fields and matter fields have.
This appeals to a metric that measures how big the effects of the one subsystem are on

2See e.g. Banks (1985, 337–338), Kiefer (2004, 165).
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the other. Why does having different size masses warrant different scales? Differences in
other properties, say charge, do not, so why mass? We must probe deeper.

To help, let’s review standard uses of the BO approximation. Since it is so widely and
successfully used, it may be imported into a derivation without considering whether the
conditions warrant its use in a new application. Unfortunately we’ll find that mass and
size scale differences between systems are only relevant for the BO approximation because
they are proxies for timescale differences in the dynamics of the relevant subsystems.

In its most popular application – molecular and atomic physics – the BO approx-
imation is used to factorize an atom or molecule’s wave-function into the product of
two subsystems. Here, the heavier subsystem is the nuclei, and the lighter subsystem
is the electrons surrounding the nuclei (Griffiths 2005). Again, the heavier system is
assumed to be effectively independent of the lighter system, while the lighter system
rapidly adapts itself to changes in the heavier system. The usual procedure in these
contexts is to pretend that the nuclear wave-function is not changing at all in time, and
then calculating the electronic wave-function associated with that nuclear wave-function.
We then calculate a more realistic nuclear wave-function by letting it vary ‘slowly’ or
‘sluggishly’, calculating the possible ranges of electronic wave-functions and hence the
mean potentials in which the nuclei can move.

More generally, the BO approximation applies in cases where heavier subsystems are
known to change slowly in time with respect to lighter subsystems. In these cases, heavier
subsystems have significantly different characteristic dynamical timescales – timescales
over which “the parameters of the system change appreciably” – with respect to lighter
subsystems, and can be said to be adiabatic with respect to the lighter subsystem. The
change in the lighter subsystem happens on such a short timescale that there isn’t enough
time for the heavier subsystem to react in that relevant timescale, and so it is effectively
independent of lighter subsystems in that period of time - hence the BO approximation.
The BO approximation is thoroughly laden with temporal notions.

Returning to the semiclassical time program, we have a dilemma at hand: either the
mass scales relevant here are proxies for time scales or not. If they are then we face
circularity; if they are not, then we have no clear means of assessing whether BO is even
applicable in this situation. In short, this seems to be a case of needing time to get time,
but of course, we have no time for that in the semiclassical time program.

3.2 The WKB Approximation

The WKB approximation is a staple of every quantum mechanics course. Because it
is often presented as a piece of pure math, this makes WKB seem like it is simply an
approximation method in the theory of partial differential equations, an unlikely place
to find a hidden time preference. But of course, we still need physical justifications for
why this math applies to a given physical situation. For that we need physics.
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Frequently WKB is used when one is working with stationary states of energy E > V .
We note that right away the time dependence is therefore hidden. If a system begins in
an energy eigenstate with eigenvalue E, then time evolution simply multiplies the state
by a time-dependent phase factor that does not affect the probabilities for measurement.

However, this is not to say that the approximation does not sneak in time elsewhere.
We can see this most clearly with the textbook WKB derivation. Let us begin with the
one-dimensional TISE describing a system in a background potential V (x):

d2ψ

dx2 + 2m
h̄2 (E − V (x))ψ = 0 (9)

or:

d2ψ

dx2 + p(x)2

h̄2 ψ = 0 (10)

where we use the classical momentum identity:

p(x) =
√

2m(E − V (x)) (11)

If V (x) is constant, then the system behaves like a free particle with ψ(x) ∼ eip(x). If
V (x) varies slowly, then we might expect that the system behaves approximately like a
free particle. Motivated by this thought, we look for solutions to the TISE of the form

ψ(x) = A(x)eiS(x)/h̄ (12)

Plugging this back into the TISE, we get two equations (for the imaginary and real parts
respectively):

h̄
d2A

dx2 = A

(
(dS
dx

)2 − p(x)2

h̄2

)
(13)

2dA
dx

dS

dx
+ A

d2S

dx2 = 0 (14)

Everything so far is exact. However, it is important to note that (13) generally does
not have analytic solutions. What then? The solution, and a crucial step in the WKB
approximation, is to assume that A varies so slowly with respect to x that d2A

dx2 ≈ 0.3
This crucial step allows us to solve (13) and (14) for A and S. Combining these results

with (15), we get to the well-known WKB approximation to the wave-function

3More precisely, as Griffiths (2005, 317) notes, we assume that d
2A/dx2

A � (dSdx )2 and d2A/dx2

A � p(x)2

h̄2 .
This step is also equivalent to taking only the zeroth-order term when expanding S in orders of h̄, a
move we have already seen in (5) above.
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ψ(x) ≈ A
√
p
exp

(
± i
h̄

∫
dx p(x)

)
(15)

Arbitrary superpositions of these wave-functions are approximate solutions of the Schrödinger
equation. They are also exact solutions of the classical Hamilton-Jacobi equation — from
which one obtains the time parameter used in the semiclassical time program.

Under what conditions are we allowed to neglect d2A
dx2 ? This is where the physics comes

in. The answer is well-known: V must vary slowly with x and (E − V ) is not too small.
When V is constant, and the system behaves like a free particle, A is constant. When V
is ‘close to constant’, i.e. varying slowly, so too is A.

On its face, the condition of V “slowly varying” does not conceal any time-dependence,
since we are only concerned with slowness with respect to the spatial x, not the temporal
t. What seems to motivate WKB is that when the potential is not too spatially sharp
one tends to not see much interference, so this important assumption is about spatial
smoothness not temporal variation.

Still, time is very much present. There are probably many ways to see this. One is to
note that if the potential spatially varies slowly with respect to the de Broglie wavelength
of the particle, then the wave-function will approximate that of a free particle, i.e., a plane
wave. That means the system will propagate freely with a constant velocity v for a time
T . As Allori and Zanghi (2009, 24) note, that time – the time for which we can pretend
that V is effectively constant – has the following relation:

T ∼ L

v
(16)

where L is the scale of the variation of the potential.4 This gives us a clear physical
picture of what it means to apply WKB in the first place. If L is long and v is low,
then the particle is moving slowly through an effectively unchanging V , allowing WKB
to hold for long times. Conversely, if L is short and v high, then the particle rapidly
moves (in time!) through the potential – in these cases we can no longer assume that V
is effectively constant for the system, and WKB will not hold for long times. Because
λ = h̄

p
= h̄

mv
, we can write (21) as:

T ∼ Lmλ

h̄
(17)

The time-dependence, evident when talking about velocities, becomes masked when we
replace velocities with purely spatial notions of wavelengths and spatial variations. Yet,
the time-dependence is very much still there as we can see in (21), and all the physical

4Allori and Zanghi (2009, 24) use the following examples for L: L =∞ for a constant potential, and
L = a for a potential of the form V (x) = sin( 2π

a x).

9



reasoning happens there. And, from (21) and (22), we can see that if L is large, the WKB
approximation will be good for long T and if small then only for short T . Obviously, if
WKB only holds for vanishing T , then it is physically unrealistic to apply it. On the
contrary, if it holds for large T , then it is physically warranted.

In standard cases WKB is thus justified via a background time metric. In the case of
semiclassical time, however, there is no such background time metric, so again, we have a
challenge: why do the spatial scales (in λ and L) justify WKB? We know of no relevant
metric in the timeless scenario that will work.

3.3 Decoherence

The discerning reader might have noticed two sleights of hand in the derivation of the
functional TDSE and ‘t’. First, in the BO approximation, we effectively assumed that
Ψ was an eigenstate (3) of the WD equation. Since the WD equation is linear, a general
solution will involve a superposition of states. Second, a similar assumption was made
in our choice of the approximate WKB wave-function for the gravitational fields χ(h)
(4). Since the WD equation is also linear, arbitrary superpositions of states are again
also solutions. These assumptions are absolutely vital for deriving a functional TDSE.5
Using an arbitrary superposition of states in the BO and WKB approximations, the
above procedures do not recover a semiclassical time.

The most popular response to these observations appeals to decoherence, e.g., Kiefer
(2005, 317). The idea is that if the initial state of the universe is in an arbitrary super-
position of states, then decoherence will drive the wavefunction into a superposition of
effectively non-interacting components, each one of which is suitable for the semiclassical
time recovery. In an Everett-type interpretation of quantum mechanics, for instance, we
could recover a time in each decohered branch or world.

Our worry is especially clear in this case because decoherence is normally understood
as a dynamic process. It presumes temporal evolution by the Schrödinger equation. De-
coherence at once requires time and is required for time. Indeed, one can find tension
in Kiefer’s own account. On the one hand, he writes that “A prerequisite [of decoher-
ence in the semiclassical time program] is the validity of the semiclassical approximation
(Section 5.4) for the global variables. This brings an approximate time parameter t into
play.” (Kiefer 2005, 311) But later he writes that “Since [decoherence] is a prerequisite
for the derivation of the Schrödinger equation, one might even say that time (the WKB
time parameter in the Schrödinger equation) arises from symmetry breaking [i.e decoher-
ence]... Strictly speaking, the very concept of time makes sense only after decoherence
has occurred.” (Kiefer 2005, 318) Obviously, the two claims cannot be true at once, and
again, we face our dilemma.

5See Kuchar 1992.
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4 Discussion

Overall, our investigations into three approximations integral to the semiclassical time
approach have unearthed a general worry: we seem to need to put time in, somewhere
and somehow, in order to get time out of the timeless formalism. We haven’t shown that
there is no possible way to do this. If we could make sense of an atemporal observer, for
instance, perhaps we could show that relative to her standards of measurement, the terms
ignored in BO, decoherence and WKB are in some sense small. Even if we could do this,
however, there is very little to work with in canonical quantum gravity to help us make
justify these approximations. This point will become clear if we compare our objections
to a very similar one leveled against decision-theoretic attempts to derive Born’s rule in
Everettian quantum mechanics.

As is well-known, the Everett interpretation faces a problem in making sense of the
probabilities we use in quantum mechanics. Its laws consist only in a linear deterministic
wave equation. Therefore it produces only trivial probabilities (0, 1) for any outcome.
Born’s Rule, our guide to experiment, seems unexplained. In response, one school of
Everettian thought turns to decision theory. The idea is to prove that an Everettian
agent, if she is rational, will set her preferences in accord with Born’s Rule. Controversy
ensues about whether the assumptions used in the proofs are really requirements of
rationality.

But there is another line of criticism that will immediately sound familiar. Baker
(2007), Kent (2010) and Zurek (2005) all point out that Everettians use decoherence to
say that different “worlds” approximately emerge from the wave-function. What does
“approximately” mean here? Well, it seems to mean that a branching structure is likely
to happen, i.e., that the probability of an error is small according to the Born measure
(mod-squared amplitude). Yet all the decision theoretic proofs begin with a branching
structure. That begs the question, the critics say, for we’ve assumed that mod-squared
amplitude is a probability in our demonstration that mod-squared amplitude is proba-
bility.

Structurally this objection is very similar to ours. Can any replies in the probability
case be transferred to the present one?

The only response on behalf of the Everettian that we have been able to find is Wallace
(2012, 253–4). As we understand him, Wallace argues that the branching structure
“really is robustly present” even prior to the interpretation of mod-squared amplitude
as probability. What standard makes it present? His answer: Hilbert space norm. This
is an objective physical measure. If branching emerges approximately with respect to
Hilbert norm, then the probability measure is not needed as an assumption assumption
in the derivation of Born’s rule. One could fairly ask whether Hilbert space norm is
really enough to answer the objection. Small differences in Hilbert space norm may not
be small differences for an observer, or vice versa. From color science we know that
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colors that look similar (have small phenomenological distance) might be produced by
physically quite dissimilar properties. The Hilbert space norm might not be enough for
Wallace to fully answer the charge.

However that debate gets resolved, we want to note that in the present case we lack
anything like Hilbert space norm. The space of all spatial three-metrics has a geometry to
it, given by the so-called DeWitt metric. But this metric won’t tell us how far quantum
states are from one another. What we would need, comparable to the Hilbert norm, is
an invariant positive-definite inner product on the space of solutions of WD. But here
we’re right back to time! “Invariant” means that the inner product is independent of
time. Constructing an invariant positive-definite inner product on the solution space of
the WD equation is the notorious “Hilbert space problem” (Kuchar (1992). Whereas
the Schrödinger equation brings “for free” a nice conserved inner product, WD does no
such thing. The most natural way to solve the Hilbert space problem is to identify a time
variable and construct a norm from that; but of course in this context that won’t help.

Lacking observers, we don’t want to say that there is no atemporal metric available to
warrant the approximations. We haven’t shown that. But we have shown that the most
natural warrant – and the warrant found hidden throughout the use of our assumptions
– is temporal. And we see no reason to think the introduction of observers will change
that verdict.

5 Conclusion

We started with the core idea that the world was fundamentally timeless: semiclassi-
cal time arises from certain regimes looking temporal when we blur our vision. That
metaphor turns out to be not quite right, as it neglects that we’ve imported a mathe-
matical construct, the Hamilton-Jacobi structure, onto the basic physics and only within
that structure does something naturally corresponding to time emerge. Instead of blurry
vision making a pattern of correlations in the wave-functions look temporal, what’s really
happened is that we’re being offered “time glasses.” We are told that you’re justified in
using these glasses – this mathematical construct – and when we look through them, they
turn the pattern temporal. But are we justified in wearing “time glasses”? At present,
it seems that the only reason to wear them is when one already has time.

References

Anderson, E. (2007). Emergent semiclassical time in quantum gravity: 1. mechanical
models. Classical and Quantum Gravity (24), 2935–2978.

Baker, D. (2007). Measurement outcomes and probability in everettian quantum me-

12



chanics. Studies In History and Philosophy of Science Part B: Studies In History and
Philosophy of Modern Physics 38 (1), 153 – 169.

Banks, T. (1985). TCP, quantum gravity, the cosmological constant and all that.. Nucl.
Phys. B 249, 332–360.

Derakhshani, M. (2018). Is standard semiclassical einstein gravity viable? Invited talk
for Prof. Claus Kiefer’s group at the Institute for Theoretical Physics at the University
of Cologne (April 2018).

DeWitt, B. S. (1967). Quantum Theory of Gravity. I. The Canonical Theory. Physical
Review 160 (5), 1113–1148.

Griffiths, D. J. (2005). Introduction to Quantum Mechanics (2nd ed.). Pearson Prentice
Hall.

Kent, A. (2010). One world versus many: The inadequacy of everettian accounts of evo-
lution, probability, and scientific confirmation. In S. Saunders, J. Barrett, D. Wallace,
and A. Kent (Eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford:
Oxford University Press.

Kiefer, C. (2004). Quantum Gravity. Oxford: Oxford University Press.

Kuchař, K. V. (2011). Time and interpretation of quantum gravity. International Journal
of Modern Physics D 20 (supp01), 3–86. Proceedings of the 4th Canadian Conference
on General Relativity and Relativistic Astrophysics, 1991.

Wallace, D. (2012). The Emergent Multiverse: Quantum Theory according to the Everett
Interpretation. Oxford: Oxford University Press.

Zurek, W. H. (2005). Probabilities from entanglement, born’s rule pk = |φk|2 from
envariance. Phys. Rev. A (71).

13


