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REDUCING THERMODYNAMICS TO STATISTICAL
MECHANICS: THE CASE OF ENTROPY *

t has become increasingly clear in recent years that the founda-

tions of statistical mechanics (SM) are almost as puzzling as—and in

some senses are more puzzling than-the foundations of quantum
mechanics. Lawrence Sklar’s' important review of the field presents
many different approaches to the foundational problems in SM.
Here, the uninitiated encounter a bewildering variety of schemes
aimed at explaining why SM works. What strikes one about these
projects is that perhaps all of them crucially rely on surprisingly du-
bious assumptions. Many projects invoke indispensable “rerandom-
ization” posits, some with Hamiltonian dynamics “turning on” and
“turning off.” Others work only in the limit of infinite particle num-
ber and/or time. Still others rely on special dynamical properties
that real systems are very unlikely to possess. The arguments sup-
porting these assumptions are typically murky. Perhaps worse, they
leave unclear their relevance to the project of providing a mechani-
cal explanation of why classical or quantum-mechanical systems be-
have thermodynamically. Philosophically minded observers may feel
at a loss when they cannot trace the reasoning from a foundational
project to an explanation of why (say) particular gases tend to fill
their available volumes. I argue here that we are often correct to
feel this way. Most of the approaches to the foundations of SM have
severed their link with the original foundational project, the project
of demonstrating how real mechanical systems can behave thermo-
dynamically.

My argument focuses on two different frameworks in SM: the
Gibbsian and the Boltzmannian. I concentrate on their different de-
finitions of entropy, since they underscore the more general concep-
tual differences between the two approaches. I argue against the
prevailing view that the Holy Grail of modern foundational research
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should be a Gibbsian entropy that strictly mirrors the behavior of the
thermodynamic entropy. The search for the Grail has not only been
in vain; it has also been misguided. Attempts to find a Gibbs entropy
that avoids the so-called “paradox” of the conservation of the fine-
grained entropy have proved unsuccessful. Worse, the very goal of
these Gibbsian approaches is radically at odds with the potential re-
duction of thermodynamics to SM. Inasmuch as one seeks a reduc-
tion (in some sense) of thermodynamics to SM, one loses her way by
pursuing the Grail. The Boltzmann entropy, neglected for much of
this century, therefore deserves serious reconsideration in light of
the failure of mainstream Gibbsian SM to tackle the above founda-
tional project. The subsequent discussion more or less follows the
order of this sequence of claims.

Before beginning, let me happily concede that for the practice of
science, Gibbsian SM is usually to be preferred. Since the values of
all the entropy functions I discuss agree at equilibrium, my argu-
ments are necessarily philosophical in nature. My topic is the much-
ignored interpretation of SM. How we interpret SM affects nearly all
of the foundational problems plaguing the subject: for example, un-
derstanding reversibility, reduction, the role of probability. No less
than the notorious problems in quantum mechanics, these problems
cry out for philosophical investigation. Indeed, the demand for
foundational investigation is especially pressing in SM; for it has long
been recognized that, as E. T. Jaynes® expresses it, it “is the enor-
mous conceptual difficulty of this field which has retarded progress
for so long” (ibid., p. 392). Yet philosophers and theoreticians have
rarely tackled the subject. As Jos Uffink remarks, this neglect is no
better illustrated than by the fact that Paul and Tatiana Ehrenfest’s
classic 1911 survey article still represents, in many respects, the state

of the art.?
I. REDUCTION AND IRREVERSIBILITY

Consider the canonical example of a gas confined by a partition to a
section of a container. Remove the partition. In a short span of
time, the gas will relax to equilibrium; that is, it will spread evenly
throughout the box, possessing a uniform pressure and tempera-
ture. What accounts for this regularity? According to thermody-
namics, the gas’s approach to equilibrium occurs mainly due to the

* “Gibbs versus Boltzmann Entropies,” American Journal of Physics, XXX (1965):
391-98.

* Uffink, “Nought but Molecules in Motion,” Studies in History and Philosophy of
Modern Physics, Xxvi1 (1996): 373. The Ehrenfests’s classic article is translated and
reprinted as The Conceptual Foundations of the Statistical Approach in Mechanics (New
York: Dover, 1990).
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Second Law. The Second Law states that an extensive state function,
the total differential 6S = 6Q /T, defined only for equilibrium states,
is such that AS>J6Q/T. Loosely put, for realistic systems, this im-
plies that in the spontaneous evolution of a thermally closed system,
the entropy can never decrease and that it attains its maximum value
for states at equilibrium. We can therefore think of the Second Law
as driving the gas to its new, higher entropy equilibrium state. Using
this concept of entropy, thermodynamics is able to capture an extra-
ordinary amount of diverse phenomena under one simple law. Re-
markably, whether they are gases filling their available volumes, two
iron bars in contact coming to the same temperature, or milk mix-
ing in your coffee, they all have an (indirectly) observable property
in common: their entropy increases.

Coffee, milk, and iron bars are not elementary individuals in our
ontology, of course. Exactly what are is a matter of great contro-
versy. But so long as one believes that quasi-periodic, time reversal in-
variant (TRI) laws govern elementary matter, we can frame our
problem in terms of classical mechanics without fear that quantum
mechanics will side-step our problem.* (The Schrodinger equation
is TRI and quasi periodic, so interpretations of quantum mechanics
that do not modify or interrupt the Schrédinger evolution will face a
problem isomorphic to the one discussed here. Other interpreta-
tions may face similar problems, but one must deal with these on a
case-by-case basis.) In classical mechanics, the ontology is particu-
late, and the coordinates and momenta of all of the particles in the
system determine the state of a system. Temporal evolution of states
is given by Hamilton’s equations of motion, dg,/dt = 0H/dp; and
dp;/dt = -0H/dq,. 1 shall represent the microstates of N-particle sys-
tems by a point X € I' and a 2Nf-dimensional phase space spanned
by Nf momenta and Nf configuration axes, where fis the number of
degrees of freedom of each particle. As the system evolves through
time, this representative point will trace out a trajectory through T".

We thus have two descriptions of our gas: one mechanical and the
other thermodynamical. We would like to know how they relate to
one another. This kind of problem is quite familiar to philosophers.

* Roughly put, TRI means (for deterministic systems) that, if we take any nomi-
cally possible sequence of states of a system, then the reverse sequence of “tempo-
rally reflected” states is dynamically necessary. That the equations are quasi
periodic, or recurrent, means the following: for systems confined to a finite volume
and a finite energy and for almost all (with respect to the standard measure) mi-
crostates X corresponding to these systems, if a system starts in some state X, then
at some time in its subsequent evolution it will return either to X or to an arbitrar-
ily small neighborhood Ay around X.
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Philosophers of biology, psychology, and all of the special sciences
are busy trying to demonstrate how the properties and concepts
used by their science are (not) reducible in some sense to the prop-
erties and concepts of “lower level” sciences. The problem is one of
intertheoretic reduction.

One might expect the present reduction would be comparatively
easy to complete successfully. After all, few take the thermodynamic
properties of gases to demand a new ontology. The thermodynamic
properties of gases are, broadly speaking, material properties, and
we simply need to determine the mechanical properties to which
they correspond. The trouble we immediately face, however, is that
the properties of fundamental physics are much different from the
properties of thermodynamics. The classical mechanical equations
of motion are TRI and quasi periodic, yet the Second Law of ther-
modynamics is not. Focusing on reversibility, Hans Reichenbach®
puts the problem the following way:

The elementary processes of statistical thermodynamics, the motions
and collisions of molecules, are supposed to be controlled by the laws of
classical mechanics and are therefore reversible. The macroprocesses
are irreversible, as we know. How can this irreversibility of macro-
processes be reconciled with the reversibility of microprocesses? It is
this paradox which the physicist has to solve when he wishes to account
for the direction of thermodynamical processes (ibid., p. 109).

Strictly speaking, this is perhaps not the best way to frame the prob-
lem. The fallacy of composition threatens. In philosophy of mind,
for example, few think that component physical systems of the brain
ought to possess the same properties as the brain (for example, in-
tentionality). Similarly, we should not expect aggregates of particles
to have the same properties as individual particles. There is no para-
dox here. In principle, values of momenta and positions exist that
will reproduce a thermodynamic system’s motion, at least if one is
willing to posit conspiratorial initial conditions.

The worry is really about whether thermodynamics can emerge in
some natural way from mechanics. Thermodynamic systems-like
chairs, tables, and similar systems picked out by our common object
language—are nothing more than complicated arrangements of phys-
ical properties. Very few would disagree with this. Thermodynamics
does not threaten physicalism. In this very weak sense, thermody-
namics is already “ontologically reduced” to mechanics. Unlike
chairs, however, the thermal features of objects play a role in an ex-

®  The Direction of Time (Berkeley: California UP, 1956).
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traordinarily powerful science: thermodynamics. We have no hope
of defining ‘chair’ in the language of physics—we do not believe it
has a simple nondisjunctive mechanical counterpart. The concept is
just too coarse. But thermodynamics defines its concepts compara-
tively precisely, and it is closer to the level of fundamental physics
than is our common object language. It is such a powerful tool in
organizing a vast range of phenomena, so striking and explanatorily
powerful, that we suspect we can find a simple, nondisjunctive coun-
terpart for it at the (statistical) mechanical level. We suspect the
thermodynamic entropy is either identical (a posteriori) to this me-
chanical correlate or at the very least supervenient upon it. Indeed,
we hope SM has already found this correlate. In this stronger, more
Nagelian sense of reduction, where the reduced theory is a “defini-
tional extension” of the reducing theory, or at least an approxima-
tion to it, the jury is still out concerning the reduction of
thermodynamics to SM.

As Reichenbach recognizes, the problem of macroscopic irre-
versibility is a warning shot for those seeking such a reduction. For
as we know from a century’s discussion of Boltzmann’s notorious H-
Theorem, the TRI and quasi periodicy of the dynamics place severe
restrictions on any mechanical definition of entropy. Rather than
rehash what should be a familiar debate, let me briefly state what I
take to be their main point. Consider the following assumptions:

(A) Entropy is a function § of the dynamical variables X(¢) of an indi-
vidual system.

(B) S(X(2)) = S(X*(t)), where ‘¥ indicates a temporal reflection.

(C) The system is closed (I is bounded).

If (A), (B), and (C) hold, then the TRI of Hamilton’s equations im-
plies S cannot increase monotonically for all initial conditions; and if
(A) and (C) hold, the quasi periodicy of the solutions to these equa-
tions implies S cannot increase monotonically for all time. In short,
if Sis a function of the dynamical variables of an individual system,
then § cannot exhibit monotonic behavior. This captures the
essence of Joseph Loschmidt’s, Ernest Zermelo’s, and Edward Cul-
verwell’s objections to the H-Theorem (see Sklar, pp. 39ff.). As we
shall see, it is symptomatic of the confusion in the field that the
lessons drawn from this implication are so varied.

Perhaps the most common response in the physics literature is to
take this implication as effectively a reductio of assumption (A). (As-
sumption (B) is never challenged; in section 111, (C) will be chal-
lenged.) The thermodynamic entropy is understood as displaying
monotonically increasing behavior; therefore, many reason, the SM
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analogue of the entropy cannot be a function of the dynamical vari-
ables of an individual system. We should instead conceive of entropy in
terms of some function of a collection of systems. Clearly, the fact that
S(X(t)) cannot monotonically increase is compatible with some other
Sunction defined on an ensemble of systems monotonically increasing.
The move to ensembles is sometimes advertised as a “way around” the
reversibility and recurrence properties of the classical dynamics. In-
deed, Jerome Rothstein explicitly treats it as such in a paper aptly enti-
tled “Loschmidt’s and Zermelo’s Paradoxes Do Not Exist.”” Noting
that Loschmidt and Zermelo’s paradoxes apply to individual systems,
Rothstein argues that since entropy is a function rightly applied to en-
sembles, the paradoxes do not threaten proofs of entropy increase.
With similar reasoning, many circles have come to see denying (A) as
the “answer” to the reversibility and recurrence paradoxes. The reader
of Sklar’s survey will recall, for instance, the denial of (A) as a refrain
repeated with the introduction of nearly every approach.

Of course, this foundational problem is not the primary reason for
denying (A). The primary reason is that Gibbs’s approach to SM de-
nies (A), and the Gibbsian approach dominates the field (which is
the reason why Rothstein feels he can use as a premise the claim that
entropy is a function on ensembles). Before criticizing the move of
avoiding the paradoxes by denying (A), we need to compare the

Gibbsian and Boltzmannian approaches to SM.
IL. GIBBS AND BOLTZMANN ENTROPIES

In his famous work of 1902, J. W. Gibbs® worries about the paradox
of the specific heats, a problem plaguing the field at the time. He fa-
mously reacts to it by developing a very abstract approach to the sub-
ject, one not so dependent upon the actual constitution of classical
systems. When he arrives at his various definitions of entropy, he

¢ More than denying A is necessary to avoid recurrence in quantum mechanics.
If a quantum system has a finite number of degrees of freedom, then recurrence
among individuals is matched by recurrence of the ensemble as a whole. This is the
lesson of a theorem by S. Ono, Mem. Fac. Kyushu University, X1 (1949): 125; and
(independently) Ian Percival, “Almost Periodicy and the Quantal H Theorem,” Jour-
nal Of Mathematical Physics, 11 (1961): 235-39. The theorem shows that the expecta-
tion value <F >, of any dynamical variable Fin an arbitrary Gibbs ensemble is an
“almost periodic” function of ¢. This implies that the probability of a particular
value of a macroscopic state must come arbitrarily close to its initial value at arbi-
trarily large times. To avoid this, one usually goes to the so-called “bulk limit,” in
which N — oo while keeping N/V finite. Doing this, however, only serves to aggra-
vate the problems already saddling the denial of (A); see section IiL.

7 Foundations of Physics, Iv (1974): 83-89.

® Elementary Principles in Statistical Mechanics (New Haven: Yale, 1902; reprint,
New York: Dover, 1962).
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tentatively offers them as “analogies” to the thermodynamic entropy
rather than as mechanical reductions of it.

On Gibbs’s approach, one considers a fictitious infinite ensemble
consisting of all the microstates compatible with a given macrostate.
The macroscopic parameters thus pick out a distribution of possible
representative points, which we treat as a fluid in I'. Upon this en-
semble we specify a normalized density function p(p,¢,¢). The mean
values of a phase function with respect to p describe the system’s
thermodynamic properties, except for the entropy and temperature.
For the entropy, Gibbs chose the expression:

(1) Sp(P(X)) =-kIp(X) [log p(X)] dT

where the integral is over I and k is Boltzmann’s constant. This is
the so-called “fine-grained” entropy. For isolated systems, we use the
microcanonical probability distribution in (1) and this will match
(up to an additive constant) the value for the thermodynamic en-
tropy. (1) will also allow us to define a temperature. Remarkably,
using these definitions Gibbs can recover the familiar thermody-
namic relations for systems in equilibrium.

Although Gibbs himself originally introduced ensembles as a kind
of mathematical trick useful for calculating observed values of
macroscopic parameters, influential physicists such as D. Ter Haar
and R. C. Tolman® dissented from this view. They claimed that the
adoption of ensembles is not merely pragmatically desirable but is
warranted by the inevitable imprecision of our measurements. To-
day, it is fair to say that this is the orthodox opinion. Their use in
SM is so ingrained that, as D. Lavis® expresses it, one needs “a con-
siderable act of will...to avoid all references to ensembles” (ibid., p.
260). Oliver Penrose," for instance, is able to begin a major review
of the foundations of SM with the claim that the fundamental prob-
lem facing the subject is justifying the choice of the correct ensem-
ble.

How much, if at all, the popularity of Gibbs’s methods owes to the
denial of (A) as a response to the recurrence and reversibility para-
doxes is a historical question I am not competent to judge. Surely,
the calculational ease of the Gibbs approach is the primary reason

® Ter Haar, “Foundations of Statistical Mechanics,” Reviews of Modern Physics,
xxviI (1955): 289; and Tolman, The Principles of Statistical Mechanics (New York: Ox-
ford, 1938; reprint, New York: Dover, 1979).

' “The Role of Statistical Mechanics in Classical Physics,” British Journal for the
Philosophy of Science, xxvi (1977): 255-79.

"' “Foundations of Statistical Mechanics,” Reports on the Progress of Physics, XLII
(1979): 1937-2006.
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why it dominates other approaches. But Gibbs’s worries about the
paradox of the specific heats surely struck a chord with many like-
minded scientists. Scientists often cited this paradox as a partial jus-
tification of instrumentalism and forms of positivism.”* It would be
interesting to know whether these philosophical ideas played any
role in the subsequent popularity of Gibbs’s theory.

Let us now turn to Ludwig Boltzmann’s” approach, in particular,
his later approach after the H-theorem. In contrast to the Gibbs en-
tropy, we define the Boltzmann entropy S; for the actual microstate
of an individual system. Consider some microstate X. X corresponds
to a macrostate M(X), which, in turn, is compatible with many dif-
ferent microstates. We wish to determine the relative volume in I'
corresponding to all the microstates giving rise to M. To accomplish
this, we must partition I" into compartments, such that all of the mi-
crostates X in a compartment are macroscopically indistinguishable,
that is, they share the same thermodynamic features. We do this
however we can, but for the ideal gas we use six-dimensional p-space.
Here, we can write the total energy of the system as a sum of one-par-
ticle energy functions on u. The U-space description is important
only for discovering which microstates are macroscopically indistin-
guishable. Once we determine this, we are then able to associate
with each M a certain volume of I', | 1"M| , which is the integral of the
time invariant Liouville volume element over I');. Up to additive
constants, S, is then given by:

(2) Sy(X) = klog Tyl

where |T Ml is the volume in I" associated with M. S; can be thought
of as providing a relative measure of the amount of I' corresponding
to the M determined by X.

The volume corresponding to a particular macrostate depends, of
course, on the macrostate in question. By far the compartment with

? See Henk de Regt, “Philosophy and the Kinetic Theory of Gases,” The British
Journal for the Philosophy of Science, XLvIl (1996): 31-62, and references therein.

* See, for instance, Vorlesungen iber Gastheorie, Volumes 1 and 2 (Leipzig: Barth,
1896-98)~translated by S. G. Brush as Lectures on Gas Theory (New York: Dover,
1964); Theoretical Physics and Philosophical Problems: Selected Writings, B. McGuinness,
ed. (Dordrecht: Reidel, 1974). For recent work on Boltzmann’s theory, see J.L.
Lebowitz, “Boltzmann’s Entropy and Time’s Arrow,” Physics Today (September
1993): 32-38, and “Macroscopic Laws, Microscopic Dynamics, Time’s Arrow and
Boltzmann’s Entropy,” Physica A, cxciv (1993): 1-27; J. Bricmont, “Science of
Chaos or Chaos in Science?” in The Flight from Science and Reason: Annals of the New
York Academy of Science, DCCLXXV (1996): 131-75; S. Ito, M. Mizutani, and T. Niwa,
“On the Time Evolution of the Boltzmann Entropy,” Journal of Mathematics of Kyoto
University, xxv1, 1 (1986): 1-11.
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the greatest volume in I' is the one each of whose points corresponds
to a Maxwellian distribution (in p-space). When N is large enough
for the system to be macroscopic (=10%) it occupies almost all of I.
If we think of a gas in a box, it is easy to see why this is so. There are
simply many more ways for a gas to be uniformly distributed in a
box, with uniform temperature and pressure, than for a gas to oc-
cupy a small corner of the box, with nonuniform temperature and
pressure. Almost all of the available I', therefore, corresponds to a
compartment representing a macrostate in thermal equilibrium. If
we adopt the “natural” Euclidean probability metric over I', we may
say that thermal equilibrium is the most probable state of an individ-
ual system. At equilibrium, for macroscopic N at a given energy and
volume, §; is approximately equal to the thermodynamic entropy.
In section v, I shall return to our discussion of §; in order to clarify
how it works and how it deals with various difficulties.™

What is the relationship between the Boltzmann and Gibbs en-
tropies? As the Ehrenfests and others have pointed out, they take
the same values at equilibrium. If the generalized microcanonical
ensemble associated with M is defined as |FM| “1if XeI');and 0 oth-
erwise, then the two are identical at equilibrium (Lebowitz). This is
not surprising, of course, for both approaches essentially seek to cal-
culate the region of motion in I" available to a system.

Nevertheless, conceptually the two entropies are very different. Most
significantly, S, is a function of the microstate of an individual system,
in contrast to Sy, which is a function of a probability distribution on
a fictional ensemble. This is the cause of many other deep differ-
ences between the Gibbsian and Boltzmannian approaches. For in-
stance, the two approaches conceive of equilibrium quite differently
and, as a consequence, they also conceive of the SM counterparts of
the thermodynamic laws differently. For Gibbs, equilibrium is char-
acterized by a particular probability distribution over I'. At equilib-

“ The u-space procedure is not in general useful for nonideal gases. Unfortu-
nately, due to the neglect of the Boltzmann approach, no work (to my knowledge)
has been done on providing a substitute for nonideal gases. Nevertheless, since
work began on this paper two different approaches have been suggested to me, one
by Uffink and Janneke van Lith and another by Sheldon Goldstein. To object to
the Boltzmann approach for this deficiency is therefore premature. It would be to
mistake a lack of practical sophistication (due to its neglect) for an in principle diffi-
culty. The difficulty is clearly not a problem of principle with the definition of Sj.
There is a fact of the matter about which subsets of I" are macroscopically indistin-
guishable. Furthermore, one will focus on macroscopic functions that are invariant
under permutation of particles. Each subset of I will have a volume proportional
to the number of permutations compatible with the macrostate, and when Nis large
one or more of these subsets will become vastly larger than the rest.
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rium S, will not fluctuate. By averaging over an ensemble, it has al-
ready built into its conception of equilibrium all of the improbable
members of the ensemble whose S; spontaneously decreases. Thus,
in Gibbs approach, it is correct to say one has fluctuational phenom-
ena at equilibrium, so the entropy at equilibrium remains constant as
in thermodynamics. On Boltzmann’s approach, by contrast, one fluc-
tuates away from equilibrium, that is, away from the most probable
value. This is because we characterize equilibrium by a particular
proper subset in I, the one whose points all correspond to a nearly
Maxwell-Boltzmann velocity distribution. We know that S; must fluc-
tuate away from equilibrium simply because it is a function of X. The
quasi periodicy of the dynamics for X implies that (for almost every
microstate) S, cannot always remain in equilibrium.

Thermodynamics states that once an isolated system achieves equi-
librium, it stays in equilibrium forever (until disturbed by external in-
fluences). Gibbsian SM agrees. Gibbsians suppose that the
probability distribution characterizing equilibrium is time indepen-
dent. Boltzmannian SM disagrees, however, as it abandons the idea
that equilibrium is stationary in time. The Boltzmann approach bal-
ances this affront to thermodynamics by retaining the idea that equi-
librium and entropy are properties of individual systems. The Gibbs
approach pays for its strict agreement with the thermodynamic laws
by relinquishing the idea that entropy and equilibrium are properties
of individual systems. We are confronted with a difficult choice. As
Sklar puts it, the choice is of “sticking with a concept most like the
thermodynamic concept and exchanging the law of thermodynamics
for a statistical regularity [Boltzmann] or of moving to an ensemble
concept and keeping the unexceptionless law [Gibbs]” (op. cit., p.
365). In the next two sections, I argue that there are some reasons
for preferring the Boltzmannian single-system approach to the Gibbsian

one when thinking about the reduction of thermodynamics to SM.
III. GETTING THE GIBBS ENTROPY MOVING

No sooner does one begin thinking about Gibbs fine-grained en-
tropy than one notices the following consequence of Liouville’s
equation. Liouville’s equation, dp/dt=0, a consequence of the
Hamiltonian equations of motion, states that the swarm of represen-
tative phase points representing an ensemble move like an incom-
pressible fluid. The Hamiltonian flow preserves the measure of any
set of points if and only if their corresponding density function satis-
fies Liouville’s equation. Liouville’s equation implies, however, that
the fine-grained entropy is invariant in time:

(3) dSp(p)/di=-k]dp/di{l + logp}dl = 0
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Src does not change, yet the thermodynamic entropy clearly does.
This is the so-called “paradox” of the conservation of the fine-
grained entropy."”

Although this “paradox” is standardly taken to present a huge dif-
ficulty for the theory, it is not immediately clear why this is so. The
thermodynamic entropy is defined only at equilibrium. The entropy
gradient holds only between equilibrium states. Explaining this fact
does not require that we discover a function that is well defined and
increasing during the interval between two equilibrium states. Find-
ing a function defined only at equilibrium but whose value at a later
equilibrium state is higher than at an earlier equilibrium state is
enough. The Gibbs approach has no problem doing this. Since the
macroscopic parameters change between two such states, we define a
new Gibbsian ensemble for this state and this will match the thermo-
dynamic entropy. The knee-jerk reaction to the conservation of the
fine-grained entropy therefore needs re-examination. While, in the
words of J. Bricmont (op. cit.), it may be “interesting or useful” to ex-
tend the concept of entropy to nonequilibrium situations, it is not
necessary in order to account for thermodynamic irreversibility.

If there is a problem with S, it is instead that it is “not fair to choose
a new ensemble description of the system at a later time” (Sklar, p. 54;
my emphasis). The ensemble at the later time should be, it seems, the
Hamiltonian time development of the earlier ensemble; otherwise, the
statement that Hamilton’s equations govern the system is a fiction. Un-
fortunately, as Gibbs found, no interesting function of the earlier en-
semble approaches the value of that function for the later ensemble.
The time development of the earlier ensemble will not lead it to ap-
proach the later one in any way. This fact is a more serious worry about
the fine-grained entropy, not that it does not monotonically increase in
the intervals between equilibrium states. The problem, therefore, re-
ally has much more to do with whether the fine-grained entropy can
provide a plausible reduction basis for the thermodynamic entropy
than it does with the simple fact that S; does not move.

In any case, my present target is not the fine-grained entropy itself,
but rather the multitude of attempts to get S;; moving between equi-
librium states. Beginning when the Ehrenfests first complained
about Gibbs’s treatment of irreversibility, the last eighty-five years
have witnessed the near universal acceptance of the idea that to ex-
plain “irreversibility,” we must find some SM entropy function that
behaves monotonically in time. These approaches either retain Sy,

* A. Wehrl, “General Properties of Entropy,” Reviews of Modern Physics, L (1978):
221-58, here p. 227.
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and therefore modify the dynamics to escape Liouville’s theorem, or
they define a new Gibbs-like entropy and try to show that it behaves
monotonically with time. The goal, which has become the Holy
Grail of modern research in the foundations of SM, is to find an en-
tropy function that strictly mirrors the thermodynamic entropy. In
other words, the goal is to find some function that always increases
until reaching a maximum value at which it remains forever. De-
spite producing many interesting results, I believe these approaches
are unsuccessful, unnecessary, and wrong-headed. Showing that this
is the case is the task of the remainder of this section and the next.

Before getting into the arguments, let us first ask why one would
demand having a strict statistical mechanical version of the Second
Law, one exhibiting non-TRI behavior. Why believe nomic irre-
versibility is necessary for the task at hand? One often finds the claim
that thermodynamic entropy increase is strictly irreversible, and
therefore, that we must base any mechanical counterpart of entropy
on something not TRI. This belief is based on a deep confusion
about what it takes for one theory to correspond to another. All we
need to do is explain how something apparently irreversible emerges
from something reversible, and we need not accomplish this through
non-TRI laws. We merely need to reproduce the image of thermody-
namics in SM at the appropriate scale, not the actual mathematical
properties of the thermodynamic laws. When trying to recover one
higher-level theory from a lower-level theory, we merely need to re-
cover the phenomena supporting the theory of interest, not a literal
statement of the reduced theory. TRI laws plus temporally asymmet-
ric initial conditions can of course mimic the phenomena governed
by thermodynamics, so non-TRI laws are not necessary.'®

Despite the great effort put into getting S, moving, no successful
approach has yet emerged, nor does any seem likely to emerge. Un-

'* Some-like N. Krylov, Works on the Foundations of Statistical Physics (Princeton:
University Press, 1979)-object that the reliance on initial conditions in the recov-
ery of the thermodynamic laws would threaten the lawfulness of thermodynamics.
If we found the laws of thermodynamics to be dependent upon special mechanical
initial conditions, they would not be universally valid and would therefore lose
their explanatory force (for example, their ability to support counterfactuals).
This strikes me as an overreaction. If the laws of thermodynamics can only be re-
covered mechanically by adopting special initial conditions, then we shall merely
have discovered that thermodynamics is a special science. Thermodynamics would
be like biology in its need of special mechanical initial conditions. But that does
not imply that thermodynamics loses its modal force any more than the same situa-
tion implies biological generalizations have no modal force. (Or if it does imply
that, then the problem is already a huge one. In either case, the point is that there
is no special problem here for thermodynamics. See my “What Is ‘The Problem of
the Direction of Time’?” Philosophy of Science (Supplement), Lx111, 2 (1997): 223-34.)
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derstanding irreversibility this particular Gibbsian way puts one in a
hole out from which one cannot plausibly dig. Obviously, I cannot
do justice to the rich variety of such attempts in one essay, never
mind one section of an essay. Fortunately, most of the major objec-
tions to the alternatives are already well documented. For this rea-
son, I shall quickly remind the reader of some of these difficulties,
refer her to the relevant readings, and then make a more general ob-
jection. I think it is primarily important that the reader get a flavor
of the difficulty and cost of extracting oneself from the “problem” of
the conservation of Sg;.

Coarse-graining. The usual response to the conservation of S is
to devise new notions of entropy and equilibrium, in particular, the
coarse-grained entropy and a notion of equilibrium suitable for it.
The motivation for these new notions is solely as a means of escaping
the above “paradox,” though it is usually defended with appeals to
the imprecision with which we observe systems.

In the coarse-grained approach, one divides I" into many small fi-
nite cells of volume Q. One takes the average of p over these cells,
obtaining the coarse-grained probability p, and attributes the value
of pto all X e Q,. By substituting p for p in (1), one defines the
coarse-grained entropy S;(p(p, Q;, t)). This entropy need not be
constant in time. Due to Liouville’s theorem, the volume p remains
constant; however, the density of p in each cell Q; will change. Equi-
librium is now defined as the state in which p has fibrillated uni-
formly throughout the available I'. One then hopes to demonstrate
that S will monotonically approach equilibrium.

One such attempt is Tolman’s generalized H-theorem. Tolman
shows that, if one assumes that p, = p,, where p, means p at time
t=n, then it will follow that Sc;(py) < Sce(P1), and that Sq.(p,)
<S¢e(Py), and so on. The proof is notoriously weak, however. First, it
is not a consequence that Sg;(p;) £ Sg(P,). Nothing follows about
the relative values of two Sgss if both are later than the initial condi-
tion. Second, the assumption that p, = p, is a very strong and con-
tentious one. Third, and perhaps most worrying, the irreversible
behavior of S arises almost solely due to the coarse-graining. Al-
though coarse-graining will undoubtedly be part of our explanation
of entropy increase, due to the large-scale differences between micro
and macro, surely it is not the whole story. Thermodynamic behav-
ior does not depend for its existence on the precision with which we
measure systems. Even if we knew the positions and momenta of all
the particles in the system, gases would still diffuse through their
available volumes.



REDUCING THERMO DYNAMICS TO STATISTICAL MECHANICS 361

Others have tried to resurrect this style of justification by using argu-
ments that assume a Markov condition. If the transition probabili-
ties for p do not depend on the actual past state of the system, then
it is possible to show that this kind of rerandomization will spread p
uniformly throughout I'. The question is whether this sort of reran-
domization posit is compatible with the underlying deterministic dy-
namics. To answer this, many physicists and mathematicians turn to
the idea that the underlying dynamics is “mixing.”

Mixing. In an attempt to make plausible the idea that a Markovian
postulate can describe correctly the ensemble evolution, many re-
searchers appeal to certain features of the dynamics. The property
of mixing is particularly popular. Loosely put, an ensemble is mix-
ing if, as p(¢) spreads out in T, its ‘threads’ are uniformly distributed
in the limit when ¢—eo. Advocates of this approach hope that real
systems are mixing. If they are, this is supposed to warrant the use of
a Markov postulate in the coarse-grained approach.

Despite many beautiful results, the relevance of mixing to the ap-
proach to equilibrium is doubtful. Apart from the problems of be-
ing valid only in the infinite time limit, the mixing justification also
suffers from the well-known “measure zero” problem. Perhaps
worse, mixing is also neither necessary nor sufficient for thermody-
namic behavior. Many systems exhibiting no “irreversible” behavior
have the property of mixing (for example, a particle in a rigid one-
dimensional box).” And due to the KAM theorem, we know many
real thermodynamic systems are not mixing systems (Sklar, pp.
1694t.).

Master equations. Master equations are a kind of generalization of
Boltzmann’s kinetic equation. They are linear Markovian rate equa-
tions for the probability distribution of a system. The idea here is to
show that the probability distribution for a system approaches the
equilibrium distribution under certain conditions. These demon-
strations are successful only when one uses the infinite time limit,
continually rerandomizes the system, and posits special random ini-
tial ensembles. The justification for any of these conditions and the
relevance of the result if successful is obscure.’

Interventionism. No realistic thermodynamically closed system is me-
chanically closed. Treating them as such is clearly an idealization. A
real gas in a box is subject to all sorts of ignored, uncontrollable per-
turbations: for example, the gravitational pull of the moons of Jupiter,
quantum fluctuations of the walls of the container, cosmic rays, and so

7 S.K. Ma, Statistical Mechanics (Singapore: World Scientific, 1985), p. 446.
8 See Sklar for critical review.
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on. Interventionists take these perturbations as essential to why en-
tropy increases. They hold that these uncontrollable perturbations
warrant abandoning Hamiltonian dynamics and hence Liouville’s the-
orem. This rejection of the classical dynamics allows them to write an
equation for the fine-grained entropy which does not have the effect
of leaving it an invariant of the motion. Modeling the “random” ex-
ternal influences with a stochastic equation of motion, perhaps as P.
Bergmann and J.L. Lebowitz" do, they are able to circumvent the con-
servation of the fine-grained entropy. They therefore have no need to
“brave the ambiguities of the coarse-grained entropy formulae,” as
Penrose puts it (op. cit., p. 1938). (In terms of our earlier problem,
interventionists deny assumption (C), but most deny (A), too.)

As an answer to the foundational questions in SM, however, I
think interventionism is a nonstarter. If classical or quantum me-
chanics is the fundamental theory of the world, then it governs the
environment of closed systems, too. If so, then Hamilton’s and Liou-
ville’s equations govern the environment, too, and thus the total
fine-grained entropy of system + environment does not increase.
One might then refer to the fact that the system + environment is it-
self subject to uncontrollable external perturbations from its envi-
ronment, and that with respect to these perturbations, the entropy
of the combined system increases, and so on a la Reichenbach. But
clearly this is a mug’s game. Unless one is willing to bite the bullet
and claim that the TRI quasi-periodic laws of mechanics only govern
the universe as a whole, and not its subsystems, then this method of
pushing the explanation back further and further will always be in
vain. But to do this is to claim that the laws of nature do not govern
the very items that are evidence for believing the laws of nature, that
is, the subsystems of the world. The fundamental problem with in-
terventionism is that it wants to have it both ways. It does not want
to offer new fundamental laws (for example, as Ilya Prigogine or
David Albert* do) but it does not wish to be constrained by the cur-
rent TRI deterministic laws either.

¥ “New Approach to Nonequilibrium Processes,” Physical Review, XCIX (1955):
578-87. See T.M. Ridderbos and M. Redhead, “The Spin Echo Experiments and
the Second Law of Thermodynamics,” Foundations of Physics, xxviil (1998): 1237-70,
and references therein for defenses of interventionism.

* Albert points out that according to the GRW interpretation of quantum me-
chanics, the indeterministic and non-TRI laws of nature may be helpful to an un-
derstanding of irreversibility; see “On the Foundations of Quantum Mechanics and
the Approach to Thermodynamic Equilibrium,” British Journal for the Philosophy of
Science, XLV (1994): 669-77. Prigogine, by contrast, wants to change even classical
mechanics; see “A Unified Foundation of Dynamics and Thermodynamics,” Chem-
ica Scripta, v (1973): 5-32.
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In addition, the approach founders on justifying the stochastic
terms used in modeling the environment and on justifying the nec-
essary time asymmetric effect of the environment. If the environ-
ment does not operate in a random way, interventionism will not
work. We would have no guarantee that systems will tend toward
equilibrium. (If we do not want such a guarantee, or we have other
reasons to think systems will tend toward equilibrium, then interven-
tionism is unnecessary.) But we cannot justify these random influ-
ences (as they often are) by appealing to our inability to control or
predict the effects of the environment. Uncontrollable and unpre-
dictable influences, we know well, are not the same as genuinely ran-
dom influences. If deterministic laws govern the environment, they
cannot be genuinely stochastic. A similar problem arises concerning
time asymmetry. If the approach is to avoid implying that entropy
increases toward the past, time asymmetric laws must govern the en-
vironment if the approach is not to beg the question. Again, unless
we adopt new, in this case non-TRI, laws of nature for the environ-
ment, this assumption will not be warranted. Finally, we can ask
whether it is really plausible or necessary to suppose that (say) the rea-
son why gases expand through their available volumes is in part due
to the locations and sizes of the moons of Jupiter.

Radical approaches. Given the problems with all of these ap-
proaches, it is not surprising that some physicists turn to quite radi-
cal approaches to the problem of irreversibility. Omne is due to
Jaynes. This is the view that entropy increase is due to the informa-
tional state of the observer and the nature of statistical inference.
The other is due to the so-called “Brussels School” led by Prigogine
and his theory of subdynamics. This approach alters the fundamen-
tal notion of a state of a system, replacing trajectories by probability
distributions. While one can sympathize with both approaches and
agree that they are both ingenious in different ways, in my opinion
neither view can be sustained.”

Finally, though each approach has its own particular difficulties to
overcome, they all (with the possible exception of the Brussels
school) share a very general problem, what Sklar dubs the “parity of
reasoning problem.” Either the reasoning behind the approaches
also works for the past direction of time as well as the future, in
which case the theory predicts entropy increase toward the past, or it
smuggles in an unwarranted temporally asymmetric assumption,

2l For criticism of the second view, see Robert Batterman, “Randomness and
Probability in Dynamical Theories: On the Proposals of the Prigogine School,” Phi-
losophy of Science, Lvit (1991): 241-63. For criticism of both views, see Sklar.
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analogous to Boltzmann’s notorious Stosszahlansatz. This assumption
typically either conflicts with the Hamiltonian dynamics or merely
ends up pushing the question back a step. Falling victim to the first
horn of this dilemma implies the theory of interest is wrong half the
time; falling victim to the second half implies the theory is either in-
consistent or incomplete. For this reason, along with the multitude
of less general difficulties, I consider it unlikely that any of these ap-

proaches ever will yield a satisfying explanation of irreversibility.
IV. REDUCING THE THERMODYNAMIC ENTROPY

We have just seen how hard it is to find a Gibbsian entropy function
that monotonically increases in time. But even if one manages to
skirt the above objections and define an entropy with the proper be-
havior, that alone does not make a function suitable as a mechanical
counterpart of the thermodynamic entropy; for, as Jaynes reminds us
when discussing Boltzmann’s H-function: “Merely to exhibit a math-
ematical quantity which tends to increase is not relevant to the sec-
ond law unless one demonstrates that this quantity is related to the
entropy as measured experimentally” (op. cit., p. 392). With this sen-
timent in mind, I wish to make a sweeping objection against any ap-
proach that defines an entropy function that increases strictly
monotonically with time.

Monotonically increasing ensemble entropies are generally re-
garded as the mechanical version of the thermodynamic entropy.
But are they suitable for this role? Sklar notes well the difference be-
tween entropy as a feature of individual systems and entropy as a fea-
ture of probability distributions. He cautions us not to move too
quickly in our reduction of the thermodynamic entropy to the en-
semble entropy, remarking that this identification is fraught with dif-
ficulty. He claims, rightly I believe, that to assert an “identity”
between features of ensembles and thermodynamic features would
be to misrepresent the relationship between the two theories (op. cit.,
p- 361). But he never adjudicates the debate between the single- and
many- system approaches as they relate to reduction. One suspects
Sklar thinks of the Gibbsian reconception of entropy as a property of
ensembles rather than a property of individual systems as simply an
instance of concept extension or revision. The idea of concept ex-
tension or revision is a familiar one to philosophers. When applying
a concept to a new context, we may slightly reform its meaning. The
reformed concept may not preserve the original term’s intension or
extension, yet its meaning may not have changed sufficiently to war-
rant calling it a new concept. What counts as sufficient? Clearly,
there is no hard and fast rule telling us how to distinguish reformed
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concepts from new concepts; rather, we make intuitive judgments
about whether the reformed concept changes from the original only
in “peripheral” features. Undoubtedly, we should expect such an ex-
tension in the present case. Whenever we explain the concepts of
one theory in terms of those of another we inevitably use concepts
with features different from the reduced theory’s concepts. When
we move from thermodynamics to SM, for instance, we extend the
concept of temperature to absolute negative values for spin systems.
On a SM treatment of temperature, this seems to make sense (but see
Uffink, op. cit.). Since “being positive” arguably is not essential to
the thermodynamic temperature (like its relationship to pressure is),
this appears to be a case of concept extension and not concept sub-
stitution. Yet is the switch from an entropy defined for individual
systems to one defined for ensembles merely an instance of a surpris-
ing concept extension?

It may be. Perhaps we can understand features of ensembles as
properties of single systems. Gibbs himself seems to have thought it
possible to eliminate reference to ensembles, although it is not en-
tirely clear what he had in mind.* Nevertheless, denying that en-
tropy is a property of individual systems ¢n order to avoid recurrence and
define a monotonically increasing entropy function does not so much elas-
tically stretch the original concept as it does completely break from
it. 'We can see this in a variety of more or less striking ways. The
simple argument that follows strongly suggests that no monotoni-
cally increasing function of time should be identified as the reduc-
tion basis of the thermodynamic entropy.

Suppose one is able to define a function of an ensemble, G(p),
that increases monotonically with time until reaching a maximum
value, at which it remains forever. Gis defined for an ensemble, for
we know from above that if it were not (that is, if assumption (A)
were affirmed) there could be no such G. Finding a function like G,
or a proof of such behavior, is the goal of many in the foundations of
SM. If we could find such a G, we could identify it with the thermo-
dynamic entropy, and the thermodynamic Second Law would re-
main a strict, unexceptional law.

Suppose we wish to describe a gas diffusing throughout its avail-
able volume into a new equilibrium state. We know that, though it
does not matter to the definition of G, the actual gas has a mi-
crostate X. We also know that X, whatever it is, gives rise to the

% See Jan von Plato, Creating Modern Probability (New York: Cambridge, 1994), p.
83, and references therein.
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macrostate M we see before us. These are merely the assumptions
we make when we say thermodynamics is in some sense reducible to
mechanics. They are completely uncontroversial. Surely, the gas
has a microstate, and surely whatever microstate it occupies corre-
sponds to the macrostate we see. Now, if we make one more meager
assumption, the irrelevance of G is assured. That assumption is that
classical or quantum mechanics always govern the evolution of X.
For Poincare’s recurrence theorem implies that for almost all mi-
crostates, at some subsequent time in their evolution they will return
either to X or to an arbitrarily small neighborhood Ay around X.
Since this neighborhood can be arbitrarily small, the difference be-
tween X and X + Ay will not matter to the macroscopic description
of the state. Xand X + Ay will correspond to the same M, whatever
it is.

We can now exhibit the problem with the proposed identification.
The behavior of our function G supposedly accounts for the Second
Law, even though this explanation is compatible with the real mi-
crostate of the gas being one that subsequently leads to a macrostate
that the system nearly already occupied. G will continue to increase, or
remain constant, even if the direction of the thermodynamic en-
tropy turns around. How do we know the thermodynamic entropy
would turn around in such a circumstance? We know this because
the thermodynamic entropy is a function of merely the endpoints of
the evolution and of the macrostate of the system. Let S, be the
thermodynamic entropy of macrostate M,, which corresponds to the
gas confined to a small section of a container. Let S, be the thermo-
dynamic entropy of macrostate M,, which corresponds to the subse-
quent state of the gas after it has spread evenly throughout its new
volume. The thermodynamic entropy, whatever it is, is given by AS,
= §y(M,) - S;(M;). But when the system recurs to an earlier
macrostate—in this case from M, to M,~its thermodynamic entropy,
whatever it is, is given by AS; = §(M;) - So(M,). The changes AS,
and AS; cannot be of the same sign. The evolution of the thermody-
namic entropy therefore will change direction during recurrence.
This is obvious, especially when we consider a film of gas diffusing
run backward, but it helps to go through the reasoning to expose
the uncontroversial premises of the argument. One might object
and point out that the thermodynamic entropy does not in fact de-
crease. Yet that misses the point: if the system in question is a me-
chanical system it can recur (and will recur, given enough time). Itis
physically possible, maybe even actual, that the value of the thermo-
dynamic entropy not even approximately match the value of G.
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Let us now reconsider the mechanical explanation of the gas re-
laxing to equilibrium provided by function G. Apparently, its expla-
nation of why the system approaches equilibrium will “work” even if
the diffused gas suddenly starts to concentrate in one small corner of
the container! This is the upshot of avoiding the recurrence theo-
rem. Any theory that explains entropy increase with a function such
as G will be forced to say its SM entropy is increasing, or remaining
constant, even while its thermodynamic entropy decreases. The only
other option is to give up one of the meager assumptions that cre-
ated this predicament. But since these are so minimal, to abandon
one of these is to give up the game.

Clearly, even without going into all the gory details concerning
the many uses of the term ‘reduction’, we cannot say that the ther-
modynamic entropy reduces to G in any sense.” The entropy to be
reduced does not supervene upon the reducing entropy, yet superve-
nience is usually considered a minimal condition for any reduction.
Lacking supervenience, it is hard to imagine how the other meta-
physical relationships philosophers sometimes desire of reduction
could hold. We cannot view G as causing the thermodynamic en-
tropy’s behavior, since the two do not even covary. Nor can G be a
posteriori identified with the thermodynamic entropy. There are
nomologically possible worlds where the two entropies do not have
the same behavior. Since any scientific identification holds across all
physically (and perhaps metaphysically) possible worlds, the fact that
there is a possible world where the two entropies differ implies they
cannot be identical. So on any theory of reduction remotely
Nagelian in spirit, where one looks for a correspondence (even ap-
proximate correspondence) between a concept at the reducing level
and a concept at the reduced level, we do not have a reduction. This
is the price of making G’s evolution independent of the individual
system’s evolution: G becomes irrelevant to the individual system.
The drive to find a function that behaves like G, we see, runs directly
contrary to the desire to have a mechanical reduction of the thermo-

dynamic entropy.
V. BOLTZMANN REVISITED

SM need not and should not search for a mechanical counterpart
for entropy that exhibits monotonic behavior with time. For when
we find such an entropy, we immediately know that it is irrelevant to
the behavior of real individual systems in the world. If this is right,
how should we react to this conclusion?

¥ For some of the gory details, see M. Spector, Concepts of Reduction in Physical
Science (Philadelphia: Temple, 1978) and references therein.



368 THE JOURNAL OF PHILOSOPHY

One reaction might be to take it (either happily or sadly, depend-
ing on one’s other views in philosophy of science) as announcing
that we cannot have a SM counterpart of the thermodynamic en-
tropy. The thermodynamic entropy, then, would be viewed as a con-
cept more like ‘chair’ than like ‘carbon’. One might then either
adopt a nonreductivist or an eliminitivist stance toward the thermo-
dynamic entropy. The options and moves available here are familiar
from the philosophy of mind literature on folk-psychological terms.

I think it is a bit early, however, to give up the search for a SM
counterpart of the thermodynamic entropy. The thermodynamic
entropy is a real (indirectly) observable property of individual sys-
tems. That the major Gibbsian approaches to SM have not found it
does not imply a mechanical counterpart does not exist. Rather, if
we cannot find it in these approaches, then we ought to look else-
where.

One entropy worthy of more investigation is the unaltered Gibbsian
fine-grained entropy Sgp;. We saw that the conservation of Sy is not
the problem many believe it to be. Although there remain questions
about it, I think it premature to close the door on Sy, from the per-
spective of reduction.

Another entropy worthy of much more thought is the largely ne-
glected Boltzmann entropy—in particular, the reconstructed, post-H-
Theorem entropy recently championed by Lebowitz (op. ¢it.) and
others. The philosophical literature on SM almost completely ig-
nores this entropy. And despite a few articles articulating the theory,
I believe it is fair to say that many prominent physicists remain con-
fused about this approach. Certainly, the letters replying to the
Lebowitz article make this abundantly clear.*® The reason for the ne-
glect lies in a complicated web of different influences. Boltzmann’s
later theory is often confused with his earlier, infamous H-theorem.*
Moreover, his own writing is difficult to follow and his reasoning is
often convoluted. When combined with several common philosoph-
ical mistakes regarding Zermelo and Loschmidt’s objections to Boltz-
mann, and the generally confused state of the field, such
misunderstanding is not terribly surprising. In any case, though I
cannot guarantee that this approach is problem free or even well de-
veloped, I believe it represents a promising candidate for under-

# Physics Today (November 1994): 113-15.

* Jaynes shows that the H-function differs (nonnegligibly) from S;; whenever
the potential energy of a system is relevant (that is, when there are interactions).
Consequently, since Sy, agrees with S; at equilibrium, the H-function differs (non-
negligibly) from S too.
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standing why mechanical systems tend to approach thermal equilib-
rium. Due to its neglect and the confusion surrounding it, I believe
it is worth describing the position in greater detail than I did in sec-
tion 1. I would like to do what I can in this section to shed some
light on potentially confusing points. I shall not claim that the the-
ory yet offers a satisfactory reduction of the thermodynamic entropy.
Although I believe it to be more promising than mainstream Gibb-
sian approaches, I shall show that it still faces some challenges.

What kind of behavior should we expect from S;? Unlike S, Spis
not an invariant of the motion, despite Liouville’s theorem. To see
this, consider the volume of macrostate Min I' at 7= 0, | FM| . Ishall
represent the time development of the points in| T',,| at T=¢as|T,/| .
Liouville’s theorem implies that IT',,| =IT,/]. But this does not imply
that the volume of the new macrostate M* in I' at T=¢, |I‘M*’|, is equal
to [T',¢l. Indeed, because most of the states in |FM*’| will not usually
have evolved from the relatively tiny region |T',l, [T, is not only un-
equal to [T',,.|, but it is typically not even close to as large as |T',./|. Thus,
S is free to vary with time.

Furthermore, it is overwhelmingly likely to increase. One can see
this qualitatively as follows. Consider a gas in equilibrium confined
to a small portion of a box. It will correspond to a certain volume
IT,;|. Now, when we remove the partition holding the gas inside that
small section, the values of the macroscopic variables will change,
opening up a large new volume in I' available to the system. Since
the new equilibrium distribution occupies almost all of the newly
available phase space, almost all of the microstates originating in the
smaller volume will evolve into this region |T',.| of the larger phase
space. Once the representative phase point of the system evolves
into this larger region, it stands virtually no chance of evolving back-
ward. Since §; is the relative measure of the amount of I' corre-
sponding to a macrostate, we can see that S; will increase when the
volume corresponding to M increases from |FM| to |FM*|. Notice also
that this explanation, unlike many in SM, works only for large N,
which is reassuring. J.C. Maxwell®* expressed the essence of this ex-
planation when he wrote: “The Second Law has the same degree of
truth as the statement that if you throw a tumblerful of water into
the sea you cannot get the same tumberful of water out again” (ibid.,
p. 583).

We need one more assumption before our sketch of Boltzmann’s
theory is complete; for as the reader has probably noticed, I have not

* P.M. Harman, ed., The Scientific Letters and Papers of J.C. Maxwell, Volume II:
1862-1873 (New York: Cambridge, 1995).
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yet addressed Sklar’s “parity of reasoning” problem. It is still true
that for typical microstates S, will increase both toward the future
and toward the past from present nonequilibrium states. That is,
given a nonequilibrium state, we predict that S, will increase toward
the future and that the system evolved from a system with higher S.
The solution to this problem, as Boltzmann and many other lumi-
naries saw, lay in appealing to temporally asymmetric boundary con-
ditions. Richard Feynman?® notes this clearly: “it is necessary to add
to the physical laws the hypothesis that in the past the universe was
more ordered, in the technical sense, than it is today” (#bid., p. 116).
By assuming that what we call the earlier states of the universe are of
comparatively low entropy with respect to what we call the later
states, we remove the unwelcome retrodiction. Earlier states do not
have higher entropy than present states simply because we assume
that sometime shortly after the Big Bang entropy was almost unimag-
inably low. Following Albert, let us call this cosmological hypothesis
the past hypothesis:

Past hypothesis: the initial (or very early) macrostate of the universe
is one of extraordinarily low entropy.

The past hypothesis solves the problem of the direction of time.
Whether it adequately explains the direction of time is another ques-
tion (see my op. cit.). It also tells us that we can live with recurrence.
Given that the universe currently resides so far from equilibrium, it
is overwhelmingly probable that entropy did and will increase for all
relevant observation times.

Before turning to two worries about the Boltzmann approach, let
me try to dispel the idea that there is anything unpleasantly subjec-
tive about S;. The coarse graining used to define S; does not imply
that Sy is subjective, only that it is relational. The thermodynamic
variables are used to characterize the macrostates of interest. Which
microstates give rise to a given thermodynamic state is an objective
matter. It does not rely on the precision with which we can measure
a state or our knowledge of a state. If a Laplacian intelligence in-
formed you of the exact microstate of some macrostate, that would
not affect the value of S; one jot. You would have more information
about the actual microstate of the system than S, could provide, but
Sp is completely independent of how much you know. This is true
despite Sp's being relational. As Jaynes (op. cit.) points out, a crystal
of salt may have two different entropies: one expressed as a function

¥ The Character of Physical Law (Cambridge: MIT, 1965).
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of temperature, pressure and volume, S(7,P), another expressed,
say, as a function of temperature, the strain tensor and electric polar-
isation, S(T,¢ E). But this does not imply, as Jaynes thought, that en-
tropy is anthropocentric in nature. It implies merely that
Boltzmann’s entropy, to its credit, reproduces an ambiguity already
existing in thermodynamics. How many microstates correspond to a
particular thermodynamic description is still an objective matter,
even if a system admits of more than one such description.”

S; seems to have the credentials we want in a reduction basis for
the thermodynamic entropy. Itis an objective function of the state
of individual systems. The actual microstate of a gas matters to the
Boltzmannian explanation of thermodynamic behavior, in the sense
that we can tell whether an individual system is in equilibrium or
not. Further, the entropy behaves the right way. For these reasons,
and some other mathematical features (for example, its additivity),
Sy seems very promising.® Before we get too excited, however, let
me finish with three questions about S, which are not often dis-
cussed.

First, for the Boltzmannian approach to work the actual mi-
crostate needs to be a generic or typical one for M (in the language
of Lebowitz). We know from the argument of section I that we can-
not expect entropy increase from all microstates all of the time. We
also know, however, that “most” microstates will tend toward equilib-
rium, since the size of the regions deviating from thermal equilib-
rium (according to Lebesgue measure) becomes negligible for large
N. As N — oo, the proportion of these typical states in I' goes to one.
But since N#e for real systems, the set of atypical points has positive
measure. What justification do we have for ignoring microstates in
this set? And are we not just begging the question if we assume the
actual microstate is always in the set of typical points? Have we really
accomplished anything? (This problem is similiar in some respects
to the so-called “measure-zero” objection to ergodic theory—only
here the atypical set is not measure zero.)

It is important not to overreact to this problem. The worry is es-
sentially asking for an independent justification of the imposition of
our “natural” probability metric on I', which is something we do not
have. But we can only try to solve one problem at a time, and any-

* Another potential source of subjectivity lay in the fact that to define S; we
must “discretize” I" into small cells. So long as the number of cells grows slowly
with respect to N, however, this will not affect the behavior of Sg.

# It is worth noting that we can extend this approach to quantum mechanics.
The volume corresponding to a macrostate has a natural analogue in Hilbert
space, namely, the dimension of the projector on the macrostate.
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way, the problem of justifying the “natural” probability metric is a
very large one common to all of the different approaches to SM.*
Indeed, it is a problem wherever we use probabilities, even outside
physics (for example, in games of chance). But, surely, it is interest-
ing and striking to discover that according to a very natural measure,
Lebesgue measure, nearly all of the initial conditions compatible with
a macrostate are such that Hamiltonian evolution will take them to
states closer to thermal equilibrium. And, surely, it is interesting and
striking (for instance) that it can be rigorously shown that this domi-
nant set of microstates will, in fact, have their time evolution approx-
imated by generalizations such as the Boltzmann equation.” To be
sure, the typicality assumption is somewhat undesirable, but given
the lesson of the reversibility and recurrence objections, I do not
know how we can escape ultimately making such an assumption with-
out changing the dynamical laws.

Furthermore, intuitively, the evolution of atypical microstates is
very contrived, as these states systematically avoid evolving into the
larger compartments of I'.  One hopes that some mild dynamijcal
constraints that will prohibit this “contrived” behavior. Computer
models and toy models such as the Kac ring model already suggest
that these conditions will be weaker than ergodicity or mixing. De-
velopment of the Boltzmannian approach should include a state-
ment of precisely what dynamical constraints one needs.

This point raises my second question: How should we understand
the “accessible regions T, 17 corresponding to X? After all, if our
system is not ergodic (metrically transitive), then I" will decompose into
subsets with boundaries that cannot be crossed by X. In what sense,
then, is |T',,| accessible to X, if [T, overlaps one or more of these
subsets? As Uffink expressed the problem to me, what dynamical rel-
evance does the relative size of |T',;| have? One partial answer might
be that the compartments of I' representing equilibrium are so large
that, even if X is trapped in some subset of I', still within that subset
“most” of the states are ones either representing equilibrium or
states closer to equilibrium. Another hope might be that the dynam-
ical constraints mentioned in the above paragraph will show that
most of |FM| is, in fact, accessible to X.

Finally, and more philosophically, it is commonly thought that
one theory reduces to another only if the reducing theory in some

¥ One potential solution to this problem is found in the GRW interpretation of
quantum mechanics—see Albert.

* See Oscar Lanford III, “The Hard-Sphere Gas in the Boltzmann-Grad Limit,”
Physica A, cv1, 70 (1981): 70-76.
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sense explains the potentially reduced theory. If we understand ‘ex-
plain’ as ‘causally explain’, for instance, can S play a role in a causal
explanation of why systems tend toward thermal equilibrium? While
playing such a role may not be necessary for the success of Sy, cer-
tainly it would be attractive. One reason to think it cannot fill this
role is that S, essentially measures the number of microstates the sys-
tem is not in but could have been without us noticing. As this num-
ber does not say much about the nature of X itself, at first glance it
hardly recommends itself as the sort of thing useful to a causal expla-
nation. But as Peter Railton* points out: “The stability of an out-
come of a causal process in spite of significant variation in initial
conditions can be informative...in the same way it is informative to
learn, regarding a given causal explanation of the First World War,
that a world war would have come about...even if no bomb had ex-
ploded in Sarajevo” (ibid., p. 251). To be sure, it would be wrong to
think that the number of states X is not “drives” X toward equilib-
rium. But finding out about the (typical) “inevitability” of thermody-
namic behavior does carry with it modal and explanatory force. Sy
quantifies this modal force.
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